Matches in SemOpenAlex for { <https://semopenalex.org/work/W3186663928> ?p ?o ?g. }
- W3186663928 endingPage "175019" @default.
- W3186663928 startingPage "175019" @default.
- W3186663928 abstract "Efficient, reliable and reproducible target volume delineation is a key step in the effective planning of breast radiotherapy. However, post-operative breast target delineation is challenging as the contrast between the tumor bed volume (TBV) and normal breast tissue is relatively low in CT images. In this study, we propose to mimic the marker-guidance procedure in manual target delineation. We developed a saliency-based deep learning segmentation (SDL-Seg) algorithm for accurate TBV segmentation in post-operative breast irradiation. The SDL-Seg algorithm incorporates saliency information in the form of markers' location cues into a U-Net model. The design forces the model to encode the location-related features, which underscores regions with high saliency levels and suppresses low saliency regions. The saliency maps were generated by identifying markers on CT images. Markers' location were then converted to probability maps using a distance transformation coupled with a Gaussian filter. Subsequently, the CT images and the corresponding saliency maps formed a multi-channel input for the SDL-Seg network. Our in-house dataset was comprised of 145 prone CT images from 29 post-operative breast cancer patients, who received 5-fraction partial breast irradiation (PBI) regimen on GammaPod. The 29 patients were randomly split into training (19), validation (5) and test (5) sets. The performance of the proposed method was compared against basic U-Net. Our model achieved mean (standard deviation) of 76.4(±2.7) %, 6.76(±1.83) mm, and 1.9(±0.66) mm for Dice similarity coefficient, 95 percentile Hausdorff distance, and average symmetric surface distance respectively on the test set with computation time of below 11 seconds per one CT volume. SDL-Seg showed superior performance relative to basic U-Net for all the evaluation metrics while preserving low computation cost. The findings demonstrate that SDL-Seg is a promising approach for improving the efficiency and accuracy of the on-line treatment planning procedure of PBI, such as GammaPod based PBI." @default.
- W3186663928 created "2021-08-02" @default.
- W3186663928 creator A5000962617 @default.
- W3186663928 creator A5006527256 @default.
- W3186663928 creator A5020643535 @default.
- W3186663928 creator A5050391090 @default.
- W3186663928 creator A5059684522 @default.
- W3186663928 creator A5064769813 @default.
- W3186663928 creator A5070254208 @default.
- W3186663928 creator A5071400654 @default.
- W3186663928 date "2021-08-27" @default.
- W3186663928 modified "2023-10-03" @default.
- W3186663928 title "Saliency-guided deep learning network for automatic tumor bed volume delineation in post-operative breast irradiation" @default.
- W3186663928 cites W1901129140 @default.
- W3186663928 cites W1973965874 @default.
- W3186663928 cites W1974237660 @default.
- W3186663928 cites W1985941733 @default.
- W3186663928 cites W2007788072 @default.
- W3186663928 cites W2049836157 @default.
- W3186663928 cites W2052864506 @default.
- W3186663928 cites W2070489514 @default.
- W3186663928 cites W2077456297 @default.
- W3186663928 cites W2097127193 @default.
- W3186663928 cites W2104611462 @default.
- W3186663928 cites W2165512921 @default.
- W3186663928 cites W2294923432 @default.
- W3186663928 cites W2527854671 @default.
- W3186663928 cites W2571079985 @default.
- W3186663928 cites W2744692634 @default.
- W3186663928 cites W2757454662 @default.
- W3186663928 cites W2761874133 @default.
- W3186663928 cites W2761889757 @default.
- W3186663928 cites W2785673949 @default.
- W3186663928 cites W2790751088 @default.
- W3186663928 cites W2803677800 @default.
- W3186663928 cites W2804608955 @default.
- W3186663928 cites W2884833628 @default.
- W3186663928 cites W2891155035 @default.
- W3186663928 cites W2900237898 @default.
- W3186663928 cites W2904368999 @default.
- W3186663928 cites W2904856451 @default.
- W3186663928 cites W2918173796 @default.
- W3186663928 cites W2932464288 @default.
- W3186663928 cites W2971013993 @default.
- W3186663928 cites W2972640676 @default.
- W3186663928 cites W3005203394 @default.
- W3186663928 cites W3017440719 @default.
- W3186663928 cites W3018252496 @default.
- W3186663928 cites W3044261867 @default.
- W3186663928 cites W3093690432 @default.
- W3186663928 cites W3104028516 @default.
- W3186663928 doi "https://doi.org/10.1088/1361-6560/ac176d" @default.
- W3186663928 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8639319" @default.
- W3186663928 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34298539" @default.
- W3186663928 hasPublicationYear "2021" @default.
- W3186663928 type Work @default.
- W3186663928 sameAs 3186663928 @default.
- W3186663928 citedByCount "4" @default.
- W3186663928 countsByYear W31866639282022 @default.
- W3186663928 countsByYear W31866639282023 @default.
- W3186663928 crossrefType "journal-article" @default.
- W3186663928 hasAuthorship W3186663928A5000962617 @default.
- W3186663928 hasAuthorship W3186663928A5006527256 @default.
- W3186663928 hasAuthorship W3186663928A5020643535 @default.
- W3186663928 hasAuthorship W3186663928A5050391090 @default.
- W3186663928 hasAuthorship W3186663928A5059684522 @default.
- W3186663928 hasAuthorship W3186663928A5064769813 @default.
- W3186663928 hasAuthorship W3186663928A5070254208 @default.
- W3186663928 hasAuthorship W3186663928A5071400654 @default.
- W3186663928 hasBestOaLocation W31866639282 @default.
- W3186663928 hasConcept C103278499 @default.
- W3186663928 hasConcept C105795698 @default.
- W3186663928 hasConcept C108583219 @default.
- W3186663928 hasConcept C115961682 @default.
- W3186663928 hasConcept C121608353 @default.
- W3186663928 hasConcept C122048520 @default.
- W3186663928 hasConcept C126322002 @default.
- W3186663928 hasConcept C141898687 @default.
- W3186663928 hasConcept C153180895 @default.
- W3186663928 hasConcept C154945302 @default.
- W3186663928 hasConcept C22679943 @default.
- W3186663928 hasConcept C2989005 @default.
- W3186663928 hasConcept C33923547 @default.
- W3186663928 hasConcept C41008148 @default.
- W3186663928 hasConcept C530470458 @default.
- W3186663928 hasConcept C71924100 @default.
- W3186663928 hasConcept C89600930 @default.
- W3186663928 hasConceptScore W3186663928C103278499 @default.
- W3186663928 hasConceptScore W3186663928C105795698 @default.
- W3186663928 hasConceptScore W3186663928C108583219 @default.
- W3186663928 hasConceptScore W3186663928C115961682 @default.
- W3186663928 hasConceptScore W3186663928C121608353 @default.
- W3186663928 hasConceptScore W3186663928C122048520 @default.
- W3186663928 hasConceptScore W3186663928C126322002 @default.
- W3186663928 hasConceptScore W3186663928C141898687 @default.
- W3186663928 hasConceptScore W3186663928C153180895 @default.
- W3186663928 hasConceptScore W3186663928C154945302 @default.
- W3186663928 hasConceptScore W3186663928C22679943 @default.