Matches in SemOpenAlex for { <https://semopenalex.org/work/W3186667701> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3186667701 abstract "For the advancement of an effective energy management system for an electric vehicle (EV) application, it is constantly needed to utilize a precise battery state of energy (SOE) estimation method. In this study, two different data- driven SOE estimation methods using deep neural network (DNN) and support vector regression (SVR) are compared. The electric vehicle drive cycles dataset is utilized for training, validation, and testing. Three drive cycle data sets such as DST, FUDS, US06 are utilized for training and validation. Whereas, the WLTP drive cycle is considered for testing. The optimum hyperparameters are obtained by gradient search CV optimization method for both DNN and SVR. Two different testing datasets (e.g., known, and unknown) are considered for the evaluation of SOE estimation using the DNN and SVR models. The SOE estimation results demonstrated the high accuracy of DNN over SVR under the same dynamic operating conditions. For WLTP drive cycle datasets, the recorded value of the estimated SOE RMSE using DNN and SVR are 2.0527 and 9.0688, respectively. The value of the estimated SOE MAE using DNN and SVR are 0.00421 and 0.0822, respectively." @default.
- W3186667701 created "2021-08-02" @default.
- W3186667701 creator A5000908652 @default.
- W3186667701 creator A5033169668 @default.
- W3186667701 creator A5054694859 @default.
- W3186667701 creator A5080307871 @default.
- W3186667701 creator A5088986216 @default.
- W3186667701 date "2021-05-24" @default.
- W3186667701 modified "2023-09-24" @default.
- W3186667701 title "Lithium-ion Battery State of Energy Estimation Using Deep Neural Network and Support Vector Regression" @default.
- W3186667701 cites W1145556568 @default.
- W3186667701 cites W2012660988 @default.
- W3186667701 cites W2047883339 @default.
- W3186667701 cites W2187958412 @default.
- W3186667701 cites W2344174278 @default.
- W3186667701 cites W2731217207 @default.
- W3186667701 cites W2758970791 @default.
- W3186667701 cites W2774519208 @default.
- W3186667701 cites W2796568833 @default.
- W3186667701 cites W2955355093 @default.
- W3186667701 cites W2981965255 @default.
- W3186667701 cites W3084393668 @default.
- W3186667701 cites W3107065415 @default.
- W3186667701 cites W3113216760 @default.
- W3186667701 cites W3122696643 @default.
- W3186667701 doi "https://doi.org/10.1109/ecce-asia49820.2021.9479413" @default.
- W3186667701 hasPublicationYear "2021" @default.
- W3186667701 type Work @default.
- W3186667701 sameAs 3186667701 @default.
- W3186667701 citedByCount "3" @default.
- W3186667701 countsByYear W31866677012022 @default.
- W3186667701 countsByYear W31866677012023 @default.
- W3186667701 crossrefType "proceedings-article" @default.
- W3186667701 hasAuthorship W3186667701A5000908652 @default.
- W3186667701 hasAuthorship W3186667701A5033169668 @default.
- W3186667701 hasAuthorship W3186667701A5054694859 @default.
- W3186667701 hasAuthorship W3186667701A5080307871 @default.
- W3186667701 hasAuthorship W3186667701A5088986216 @default.
- W3186667701 hasConcept C105795698 @default.
- W3186667701 hasConcept C119857082 @default.
- W3186667701 hasConcept C121332964 @default.
- W3186667701 hasConcept C12267149 @default.
- W3186667701 hasConcept C139945424 @default.
- W3186667701 hasConcept C154945302 @default.
- W3186667701 hasConcept C163258240 @default.
- W3186667701 hasConcept C186370098 @default.
- W3186667701 hasConcept C33923547 @default.
- W3186667701 hasConcept C41008148 @default.
- W3186667701 hasConcept C50644808 @default.
- W3186667701 hasConcept C555008776 @default.
- W3186667701 hasConcept C62520636 @default.
- W3186667701 hasConcept C8642999 @default.
- W3186667701 hasConceptScore W3186667701C105795698 @default.
- W3186667701 hasConceptScore W3186667701C119857082 @default.
- W3186667701 hasConceptScore W3186667701C121332964 @default.
- W3186667701 hasConceptScore W3186667701C12267149 @default.
- W3186667701 hasConceptScore W3186667701C139945424 @default.
- W3186667701 hasConceptScore W3186667701C154945302 @default.
- W3186667701 hasConceptScore W3186667701C163258240 @default.
- W3186667701 hasConceptScore W3186667701C186370098 @default.
- W3186667701 hasConceptScore W3186667701C33923547 @default.
- W3186667701 hasConceptScore W3186667701C41008148 @default.
- W3186667701 hasConceptScore W3186667701C50644808 @default.
- W3186667701 hasConceptScore W3186667701C555008776 @default.
- W3186667701 hasConceptScore W3186667701C62520636 @default.
- W3186667701 hasConceptScore W3186667701C8642999 @default.
- W3186667701 hasFunder F4320337345 @default.
- W3186667701 hasLocation W31866677011 @default.
- W3186667701 hasOpenAccess W3186667701 @default.
- W3186667701 hasPrimaryLocation W31866677011 @default.
- W3186667701 hasRelatedWork W2101819884 @default.
- W3186667701 hasRelatedWork W2937631562 @default.
- W3186667701 hasRelatedWork W3136979370 @default.
- W3186667701 hasRelatedWork W3194539120 @default.
- W3186667701 hasRelatedWork W4205958290 @default.
- W3186667701 hasRelatedWork W4210794429 @default.
- W3186667701 hasRelatedWork W4280535922 @default.
- W3186667701 hasRelatedWork W4295309597 @default.
- W3186667701 hasRelatedWork W4313854490 @default.
- W3186667701 hasRelatedWork W4320494184 @default.
- W3186667701 isParatext "false" @default.
- W3186667701 isRetracted "false" @default.
- W3186667701 magId "3186667701" @default.
- W3186667701 workType "article" @default.