Matches in SemOpenAlex for { <https://semopenalex.org/work/W3186707780> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W3186707780 endingPage "317" @default.
- W3186707780 startingPage "310" @default.
- W3186707780 abstract "The mass attenuation coefficient is the primary physical parameter to model narrow beam gamma-ray attenuation. A new machine learning based approach is proposed to model gamma-ray shielding behavior of composites alternative to theoretical calculations. Two fuzzy logic algorithms and a neural network algorithm were trained and tested with different mixture ratios of vanadium slag/epoxy resin/antimony in the 0.05 MeV–2 MeV energy range. Two of the algorithms showed excellent agreement with testing data after optimizing adjustable parameters, with root mean squared error (RMSE) values down to 0.0001. Those results are remarkable because mass attenuation coefficients are often presented with four significant figures. Different training data sizes were tried to determine the least number of data points required to train sufficient models. Data set size more than 1000 is seen to be required to model in above 0.05 MeV energy. Below this energy, more data points with finer energy resolution might be required. Neuro-fuzzy models were three times faster to train than neural network models, while neural network models depicted low RMSE. Fuzzy logic algorithms are overlooked in complex function approximation, yet grid partitioned fuzzy algorithms showed excellent calculation efficiency and good convergence in predicting mass attenuation coefficient." @default.
- W3186707780 created "2021-08-02" @default.
- W3186707780 creator A5008429727 @default.
- W3186707780 creator A5014368387 @default.
- W3186707780 creator A5015944626 @default.
- W3186707780 creator A5027345444 @default.
- W3186707780 creator A5054202607 @default.
- W3186707780 date "2022-01-01" @default.
- W3186707780 modified "2023-10-12" @default.
- W3186707780 title "A comparative study on applicability and efficiency of machine learning algorithms for modeling gamma-ray shielding behaviors" @default.
- W3186707780 cites W1586335931 @default.
- W3186707780 cites W2046738003 @default.
- W3186707780 cites W2050436202 @default.
- W3186707780 cites W2053662940 @default.
- W3186707780 cites W2060748802 @default.
- W3186707780 cites W2063140498 @default.
- W3186707780 cites W2077251979 @default.
- W3186707780 cites W2164108127 @default.
- W3186707780 cites W2288173420 @default.
- W3186707780 cites W2397411948 @default.
- W3186707780 cites W2760055860 @default.
- W3186707780 cites W2889017964 @default.
- W3186707780 cites W2902947156 @default.
- W3186707780 cites W2965239787 @default.
- W3186707780 cites W4211007335 @default.
- W3186707780 cites W902043021 @default.
- W3186707780 doi "https://doi.org/10.1016/j.net.2021.07.031" @default.
- W3186707780 hasPublicationYear "2022" @default.
- W3186707780 type Work @default.
- W3186707780 sameAs 3186707780 @default.
- W3186707780 citedByCount "2" @default.
- W3186707780 countsByYear W31867077802022 @default.
- W3186707780 countsByYear W31867077802023 @default.
- W3186707780 crossrefType "journal-article" @default.
- W3186707780 hasAuthorship W3186707780A5008429727 @default.
- W3186707780 hasAuthorship W3186707780A5014368387 @default.
- W3186707780 hasAuthorship W3186707780A5015944626 @default.
- W3186707780 hasAuthorship W3186707780A5027345444 @default.
- W3186707780 hasAuthorship W3186707780A5054202607 @default.
- W3186707780 hasBestOaLocation W31867077801 @default.
- W3186707780 hasConcept C105795698 @default.
- W3186707780 hasConcept C11413529 @default.
- W3186707780 hasConcept C119857082 @default.
- W3186707780 hasConcept C120665830 @default.
- W3186707780 hasConcept C121332964 @default.
- W3186707780 hasConcept C139945424 @default.
- W3186707780 hasConcept C150217764 @default.
- W3186707780 hasConcept C154945302 @default.
- W3186707780 hasConcept C162324750 @default.
- W3186707780 hasConcept C184652730 @default.
- W3186707780 hasConcept C186108316 @default.
- W3186707780 hasConcept C186370098 @default.
- W3186707780 hasConcept C195975749 @default.
- W3186707780 hasConcept C2777303404 @default.
- W3186707780 hasConcept C33923547 @default.
- W3186707780 hasConcept C41008148 @default.
- W3186707780 hasConcept C50522688 @default.
- W3186707780 hasConcept C50644808 @default.
- W3186707780 hasConcept C58166 @default.
- W3186707780 hasConceptScore W3186707780C105795698 @default.
- W3186707780 hasConceptScore W3186707780C11413529 @default.
- W3186707780 hasConceptScore W3186707780C119857082 @default.
- W3186707780 hasConceptScore W3186707780C120665830 @default.
- W3186707780 hasConceptScore W3186707780C121332964 @default.
- W3186707780 hasConceptScore W3186707780C139945424 @default.
- W3186707780 hasConceptScore W3186707780C150217764 @default.
- W3186707780 hasConceptScore W3186707780C154945302 @default.
- W3186707780 hasConceptScore W3186707780C162324750 @default.
- W3186707780 hasConceptScore W3186707780C184652730 @default.
- W3186707780 hasConceptScore W3186707780C186108316 @default.
- W3186707780 hasConceptScore W3186707780C186370098 @default.
- W3186707780 hasConceptScore W3186707780C195975749 @default.
- W3186707780 hasConceptScore W3186707780C2777303404 @default.
- W3186707780 hasConceptScore W3186707780C33923547 @default.
- W3186707780 hasConceptScore W3186707780C41008148 @default.
- W3186707780 hasConceptScore W3186707780C50522688 @default.
- W3186707780 hasConceptScore W3186707780C50644808 @default.
- W3186707780 hasConceptScore W3186707780C58166 @default.
- W3186707780 hasIssue "1" @default.
- W3186707780 hasLocation W31867077801 @default.
- W3186707780 hasLocation W31867077802 @default.
- W3186707780 hasOpenAccess W3186707780 @default.
- W3186707780 hasPrimaryLocation W31867077801 @default.
- W3186707780 hasRelatedWork W2095503193 @default.
- W3186707780 hasRelatedWork W2508060345 @default.
- W3186707780 hasRelatedWork W2980485567 @default.
- W3186707780 hasRelatedWork W3025444948 @default.
- W3186707780 hasRelatedWork W3119865579 @default.
- W3186707780 hasRelatedWork W4235645554 @default.
- W3186707780 hasRelatedWork W4244255161 @default.
- W3186707780 hasRelatedWork W4285104253 @default.
- W3186707780 hasRelatedWork W4319588712 @default.
- W3186707780 hasRelatedWork W4380684038 @default.
- W3186707780 hasVolume "54" @default.
- W3186707780 isParatext "false" @default.
- W3186707780 isRetracted "false" @default.
- W3186707780 magId "3186707780" @default.
- W3186707780 workType "article" @default.