Matches in SemOpenAlex for { <https://semopenalex.org/work/W3186722396> ?p ?o ?g. }
- W3186722396 endingPage "16313" @default.
- W3186722396 startingPage "16279" @default.
- W3186722396 abstract "In this paper, we treat the problem of testing for normality as a binary classification problem and construct a feedforward neural network that can act as a powerful normality test. We show that by changing its decision threshold, we can control the frequency of false non-normal predictions and thus make the network more similar to standard statistical tests. We also find the optimal decision thresholds that minimize the total error probability for each sample size. The experiments conducted on the samples with no more than 100 elements suggest that our method is more accurate and more powerful than the selected standard tests of normality for almost all the types of alternative distributions and sample sizes. In particular, the neural network was the most powerful method for testing normality of the samples with fewer than 30 elements regardless of the alternative distribution type. Its total accuracy increased with the sample size. Additionally, when the optimal decision-thresholds were used, the network was very accurate for larger samples with 250–1000 elements. With AUROC equal to almost 1, the network was the most accurate method overall. Since the normality of data is an assumption of numerous statistical techniques, the network constructed in this study has a very high potential for use in everyday practice of statistics, data analysis and machine learning." @default.
- W3186722396 created "2021-08-02" @default.
- W3186722396 creator A5034967094 @default.
- W3186722396 date "2021-07-21" @default.
- W3186722396 modified "2023-09-27" @default.
- W3186722396 title "Testing for normality with neural networks" @default.
- W3186722396 cites W142046526 @default.
- W3186722396 cites W1510073064 @default.
- W3186722396 cites W1543298386 @default.
- W3186722396 cites W1593711959 @default.
- W3186722396 cites W1638081485 @default.
- W3186722396 cites W1851612831 @default.
- W3186722396 cites W186513846 @default.
- W3186722396 cites W1946137962 @default.
- W3186722396 cites W1965982559 @default.
- W3186722396 cites W1972673289 @default.
- W3186722396 cites W1972872178 @default.
- W3186722396 cites W1973429805 @default.
- W3186722396 cites W1975107026 @default.
- W3186722396 cites W1979593580 @default.
- W3186722396 cites W1980501707 @default.
- W3186722396 cites W1989568569 @default.
- W3186722396 cites W1991475547 @default.
- W3186722396 cites W1996039204 @default.
- W3186722396 cites W1999389716 @default.
- W3186722396 cites W2007472055 @default.
- W3186722396 cites W2012942264 @default.
- W3186722396 cites W2016858869 @default.
- W3186722396 cites W2033263428 @default.
- W3186722396 cites W2043845271 @default.
- W3186722396 cites W2045907900 @default.
- W3186722396 cites W2054191321 @default.
- W3186722396 cites W2056299119 @default.
- W3186722396 cites W2061418917 @default.
- W3186722396 cites W2065226659 @default.
- W3186722396 cites W2065375802 @default.
- W3186722396 cites W2065598626 @default.
- W3186722396 cites W2075879115 @default.
- W3186722396 cites W2079615115 @default.
- W3186722396 cites W2091406001 @default.
- W3186722396 cites W2095720871 @default.
- W3186722396 cites W2101176412 @default.
- W3186722396 cites W2109020439 @default.
- W3186722396 cites W2110647548 @default.
- W3186722396 cites W2122093723 @default.
- W3186722396 cites W2123458179 @default.
- W3186722396 cites W2127275073 @default.
- W3186722396 cites W2155086368 @default.
- W3186722396 cites W2156665896 @default.
- W3186722396 cites W2164943005 @default.
- W3186722396 cites W2175330245 @default.
- W3186722396 cites W241856062 @default.
- W3186722396 cites W2526796555 @default.
- W3186722396 cites W2546302380 @default.
- W3186722396 cites W2587733371 @default.
- W3186722396 cites W2770266728 @default.
- W3186722396 cites W2795510964 @default.
- W3186722396 cites W2897002077 @default.
- W3186722396 cites W2962872286 @default.
- W3186722396 cites W2963535485 @default.
- W3186722396 cites W2963805627 @default.
- W3186722396 cites W2963973173 @default.
- W3186722396 cites W2972698591 @default.
- W3186722396 cites W3104888196 @default.
- W3186722396 cites W4206302131 @default.
- W3186722396 cites W4229977739 @default.
- W3186722396 cites W4233113463 @default.
- W3186722396 cites W4236196511 @default.
- W3186722396 cites W4239953570 @default.
- W3186722396 cites W4244041218 @default.
- W3186722396 cites W4245239895 @default.
- W3186722396 cites W4251428492 @default.
- W3186722396 cites W4254004007 @default.
- W3186722396 doi "https://doi.org/10.1007/s00521-021-06229-7" @default.
- W3186722396 hasPublicationYear "2021" @default.
- W3186722396 type Work @default.
- W3186722396 sameAs 3186722396 @default.
- W3186722396 citedByCount "2" @default.
- W3186722396 countsByYear W31867223962022 @default.
- W3186722396 crossrefType "journal-article" @default.
- W3186722396 hasAuthorship W3186722396A5034967094 @default.
- W3186722396 hasBestOaLocation W31867223962 @default.
- W3186722396 hasConcept C102094743 @default.
- W3186722396 hasConcept C105795698 @default.
- W3186722396 hasConcept C119857082 @default.
- W3186722396 hasConcept C129848803 @default.
- W3186722396 hasConcept C153180895 @default.
- W3186722396 hasConcept C154945302 @default.
- W3186722396 hasConcept C185592680 @default.
- W3186722396 hasConcept C198531522 @default.
- W3186722396 hasConcept C2776157432 @default.
- W3186722396 hasConcept C33923547 @default.
- W3186722396 hasConcept C41008148 @default.
- W3186722396 hasConcept C43617362 @default.
- W3186722396 hasConcept C47702885 @default.
- W3186722396 hasConcept C50644808 @default.
- W3186722396 hasConcept C85031952 @default.
- W3186722396 hasConcept C87007009 @default.