Matches in SemOpenAlex for { <https://semopenalex.org/work/W3186937767> ?p ?o ?g. }
- W3186937767 endingPage "1128" @default.
- W3186937767 startingPage "1119" @default.
- W3186937767 abstract "Task-related component analysis (TRCA) has been applied successfully in the recently popular steady-state visual evoked potential (SSVEP) target recognition methods. However, a spatial filter is trained for each class in TRCA, and the training of each filter uses only the training data of the corresponding class. Therefore, the information between classes is ignored in the training process, which leads to classification inefficiency. Aiming at solving this defect in TRCA, we proposed a 2-D locality preserving projections (2DLPP) method and a 2-D linear discriminant analysis (2DLDA) method based on the 2-Norm form of Pearson’s correlation coefficient. The 2DLPP and 2DLDA methods can simultaneously use the samples of all categories to train the spatial filters so that these two methods can make use of the information between classes to some extent. We also showed that the 2DLPP method and the 2DLDA method performed significantly better than the multiset canonical correlation analysis (MsetCCA), extended CCA (eCCA), and TRCA methods with two public data sets. Therefore, the proposed methods based on 2DLPP or 2DLDA can make more efficient use of sample information and have a great potential for SSVEP target recognition." @default.
- W3186937767 created "2021-08-02" @default.
- W3186937767 creator A5018676117 @default.
- W3186937767 creator A5021376482 @default.
- W3186937767 creator A5026217652 @default.
- W3186937767 creator A5033909694 @default.
- W3186937767 creator A5054358636 @default.
- W3186937767 creator A5068783635 @default.
- W3186937767 date "2022-09-01" @default.
- W3186937767 modified "2023-10-14" @default.
- W3186937767 title "Efficient Spatial Filters Enhance SSVEP Target Recognition Based on Task-Related Component Analysis" @default.
- W3186937767 cites W1844272693 @default.
- W3186937767 cites W1973182723 @default.
- W3186937767 cites W2008244396 @default.
- W3186937767 cites W2021455295 @default.
- W3186937767 cites W2051360945 @default.
- W3186937767 cites W2072026719 @default.
- W3186937767 cites W2079223014 @default.
- W3186937767 cites W2090341258 @default.
- W3186937767 cites W2095392975 @default.
- W3186937767 cites W2098725211 @default.
- W3186937767 cites W2105478324 @default.
- W3186937767 cites W2132876794 @default.
- W3186937767 cites W2143183535 @default.
- W3186937767 cites W2145302786 @default.
- W3186937767 cites W2164552042 @default.
- W3186937767 cites W2338492816 @default.
- W3186937767 cites W2541533463 @default.
- W3186937767 cites W2553904372 @default.
- W3186937767 cites W2605492512 @default.
- W3186937767 cites W2749714969 @default.
- W3186937767 cites W2756928350 @default.
- W3186937767 cites W2790114788 @default.
- W3186937767 cites W2792687613 @default.
- W3186937767 cites W2885364096 @default.
- W3186937767 cites W2944071464 @default.
- W3186937767 cites W2946105889 @default.
- W3186937767 cites W2960585436 @default.
- W3186937767 cites W2982056594 @default.
- W3186937767 cites W2991183506 @default.
- W3186937767 cites W2991224771 @default.
- W3186937767 cites W2996605177 @default.
- W3186937767 cites W2998959557 @default.
- W3186937767 cites W3001567762 @default.
- W3186937767 cites W3007062513 @default.
- W3186937767 cites W3007612421 @default.
- W3186937767 cites W3010506751 @default.
- W3186937767 cites W3012101784 @default.
- W3186937767 cites W3045498216 @default.
- W3186937767 cites W3082143837 @default.
- W3186937767 cites W3103655579 @default.
- W3186937767 doi "https://doi.org/10.1109/tcds.2021.3096812" @default.
- W3186937767 hasPublicationYear "2022" @default.
- W3186937767 type Work @default.
- W3186937767 sameAs 3186937767 @default.
- W3186937767 citedByCount "1" @default.
- W3186937767 countsByYear W31869377672022 @default.
- W3186937767 crossrefType "journal-article" @default.
- W3186937767 hasAuthorship W3186937767A5018676117 @default.
- W3186937767 hasAuthorship W3186937767A5021376482 @default.
- W3186937767 hasAuthorship W3186937767A5026217652 @default.
- W3186937767 hasAuthorship W3186937767A5033909694 @default.
- W3186937767 hasAuthorship W3186937767A5054358636 @default.
- W3186937767 hasAuthorship W3186937767A5068783635 @default.
- W3186937767 hasConcept C105795698 @default.
- W3186937767 hasConcept C114614502 @default.
- W3186937767 hasConcept C153180895 @default.
- W3186937767 hasConcept C153874254 @default.
- W3186937767 hasConcept C154945302 @default.
- W3186937767 hasConcept C27438332 @default.
- W3186937767 hasConcept C2779623528 @default.
- W3186937767 hasConcept C2780692498 @default.
- W3186937767 hasConcept C33923547 @default.
- W3186937767 hasConcept C36464697 @default.
- W3186937767 hasConcept C41008148 @default.
- W3186937767 hasConcept C51432778 @default.
- W3186937767 hasConcept C55078378 @default.
- W3186937767 hasConcept C69738355 @default.
- W3186937767 hasConceptScore W3186937767C105795698 @default.
- W3186937767 hasConceptScore W3186937767C114614502 @default.
- W3186937767 hasConceptScore W3186937767C153180895 @default.
- W3186937767 hasConceptScore W3186937767C153874254 @default.
- W3186937767 hasConceptScore W3186937767C154945302 @default.
- W3186937767 hasConceptScore W3186937767C27438332 @default.
- W3186937767 hasConceptScore W3186937767C2779623528 @default.
- W3186937767 hasConceptScore W3186937767C2780692498 @default.
- W3186937767 hasConceptScore W3186937767C33923547 @default.
- W3186937767 hasConceptScore W3186937767C36464697 @default.
- W3186937767 hasConceptScore W3186937767C41008148 @default.
- W3186937767 hasConceptScore W3186937767C51432778 @default.
- W3186937767 hasConceptScore W3186937767C55078378 @default.
- W3186937767 hasConceptScore W3186937767C69738355 @default.
- W3186937767 hasFunder F4320321001 @default.
- W3186937767 hasFunder F4320321659 @default.
- W3186937767 hasFunder F4320321912 @default.
- W3186937767 hasFunder F4320322511 @default.
- W3186937767 hasFunder F4320335777 @default.
- W3186937767 hasIssue "3" @default.