Matches in SemOpenAlex for { <https://semopenalex.org/work/W3186946649> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3186946649 abstract "With the advancements in the computer vision technology, learning and using sign languages to communicate with deaf and mute people has become easier. Exciting research is ongoing for providing a global platform for communication in different sign languages. In this paper, we present a Deep Learning based approach to recognize a sign performed in American Sign Language by capturing an image as input. The system can predict the signs of 0 to 9 digits performed by the user. By utilizing image processing to convert RGB data to grayscale images, efficient reduction is achieved in the storage requirements and training time of the Convolutional Neural Network. The objective of the experiment is to find a mix of Image Processing and Deep Learning Architecture with lesser complexity to deploy the system in mobile applications or embedded single board computers. The database is trained from scratch using smaller networks as LeNet-5 and AlexNet as well as deeper network such as Vgg16 and MobileNet v2. The comparison of the recognition accuracies is discussed in the paper. The final selected architecture has only 10 layers including a dropout layer which boosted the training accuracy to 91.37% and testing accuracy to 87.5%." @default.
- W3186946649 created "2021-08-02" @default.
- W3186946649 creator A5014930078 @default.
- W3186946649 creator A5018536803 @default.
- W3186946649 creator A5086885258 @default.
- W3186946649 date "2021-05-14" @default.
- W3186946649 modified "2023-09-25" @default.
- W3186946649 title "Convolutional Neural Network Hand Gesture Recognition for American Sign Language" @default.
- W3186946649 cites W1980601381 @default.
- W3186946649 cites W2112796928 @default.
- W3186946649 cites W2602538865 @default.
- W3186946649 cites W2792183839 @default.
- W3186946649 cites W2912886600 @default.
- W3186946649 cites W2919772689 @default.
- W3186946649 doi "https://doi.org/10.1109/eit51626.2021.9491897" @default.
- W3186946649 hasPublicationYear "2021" @default.
- W3186946649 type Work @default.
- W3186946649 sameAs 3186946649 @default.
- W3186946649 citedByCount "7" @default.
- W3186946649 countsByYear W31869466492022 @default.
- W3186946649 countsByYear W31869466492023 @default.
- W3186946649 crossrefType "proceedings-article" @default.
- W3186946649 hasAuthorship W3186946649A5014930078 @default.
- W3186946649 hasAuthorship W3186946649A5018536803 @default.
- W3186946649 hasAuthorship W3186946649A5086885258 @default.
- W3186946649 hasConcept C108583219 @default.
- W3186946649 hasConcept C115961682 @default.
- W3186946649 hasConcept C119857082 @default.
- W3186946649 hasConcept C138885662 @default.
- W3186946649 hasConcept C153180895 @default.
- W3186946649 hasConcept C154945302 @default.
- W3186946649 hasConcept C159437735 @default.
- W3186946649 hasConcept C207347870 @default.
- W3186946649 hasConcept C2776145597 @default.
- W3186946649 hasConcept C2776737515 @default.
- W3186946649 hasConcept C28490314 @default.
- W3186946649 hasConcept C31972630 @default.
- W3186946649 hasConcept C41008148 @default.
- W3186946649 hasConcept C41895202 @default.
- W3186946649 hasConcept C522192633 @default.
- W3186946649 hasConcept C78201319 @default.
- W3186946649 hasConcept C81363708 @default.
- W3186946649 hasConcept C82990744 @default.
- W3186946649 hasConcept C9417928 @default.
- W3186946649 hasConceptScore W3186946649C108583219 @default.
- W3186946649 hasConceptScore W3186946649C115961682 @default.
- W3186946649 hasConceptScore W3186946649C119857082 @default.
- W3186946649 hasConceptScore W3186946649C138885662 @default.
- W3186946649 hasConceptScore W3186946649C153180895 @default.
- W3186946649 hasConceptScore W3186946649C154945302 @default.
- W3186946649 hasConceptScore W3186946649C159437735 @default.
- W3186946649 hasConceptScore W3186946649C207347870 @default.
- W3186946649 hasConceptScore W3186946649C2776145597 @default.
- W3186946649 hasConceptScore W3186946649C2776737515 @default.
- W3186946649 hasConceptScore W3186946649C28490314 @default.
- W3186946649 hasConceptScore W3186946649C31972630 @default.
- W3186946649 hasConceptScore W3186946649C41008148 @default.
- W3186946649 hasConceptScore W3186946649C41895202 @default.
- W3186946649 hasConceptScore W3186946649C522192633 @default.
- W3186946649 hasConceptScore W3186946649C78201319 @default.
- W3186946649 hasConceptScore W3186946649C81363708 @default.
- W3186946649 hasConceptScore W3186946649C82990744 @default.
- W3186946649 hasConceptScore W3186946649C9417928 @default.
- W3186946649 hasLocation W31869466491 @default.
- W3186946649 hasOpenAccess W3186946649 @default.
- W3186946649 hasPrimaryLocation W31869466491 @default.
- W3186946649 hasRelatedWork W1033489 @default.
- W3186946649 hasRelatedWork W11747580 @default.
- W3186946649 hasRelatedWork W2308663 @default.
- W3186946649 hasRelatedWork W2583009 @default.
- W3186946649 hasRelatedWork W3817842 @default.
- W3186946649 hasRelatedWork W3856460 @default.
- W3186946649 hasRelatedWork W6717321 @default.
- W3186946649 hasRelatedWork W681381 @default.
- W3186946649 hasRelatedWork W7810185 @default.
- W3186946649 hasRelatedWork W954322 @default.
- W3186946649 isParatext "false" @default.
- W3186946649 isRetracted "false" @default.
- W3186946649 magId "3186946649" @default.
- W3186946649 workType "article" @default.