Matches in SemOpenAlex for { <https://semopenalex.org/work/W3186948169> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W3186948169 endingPage "942" @default.
- W3186948169 startingPage "901" @default.
- W3186948169 abstract "Abstract The Milnor number $$mu _f$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msub> <mml:mi>μ</mml:mi> <mml:mi>f</mml:mi> </mml:msub> </mml:math> of a holomorphic function $$f :({mathbb {C}}^n,0) rightarrow ({mathbb {C}},0)$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>:</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mrow> <mml:mi>C</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>→</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>C</mml:mi> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> with an isolated singularity has several different characterizations as, for example: 1) the number of critical points in a morsification of f , 2) the middle Betti number of its Milnor fiber $$M_f$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>f</mml:mi> </mml:msub> </mml:math> , 3) the degree of the differential $${text {d}}f$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mtext>d</mml:mtext> <mml:mi>f</mml:mi> </mml:mrow> </mml:math> at the origin, and 4) the length of an analytic algebra due to Milnor’s formula $$mu _f = dim _{mathbb {C}}{mathcal {O}}_n/{text {Jac}}(f)$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:msub> <mml:mi>μ</mml:mi> <mml:mi>f</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:msub> <mml:mo>dim</mml:mo> <mml:mi>C</mml:mi> </mml:msub> <mml:msub> <mml:mi>O</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>/</mml:mo> <mml:mtext>Jac</mml:mtext> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> . Let $$(X,0) subset ({mathbb {C}}^n,0)$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>⊂</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mrow> <mml:mi>C</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> be an arbitrarily singular reduced analytic space, endowed with its canonical Whitney stratification and let $$f :({mathbb {C}}^n,0) rightarrow ({mathbb {C}},0)$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>:</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mrow> <mml:mi>C</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>→</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>C</mml:mi> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> be a holomorphic function whose restriction f |( X , 0) has an isolated singularity in the stratified sense. For each stratum $${mathscr {S}}_alpha $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msub> <mml:mi>S</mml:mi> <mml:mi>α</mml:mi> </mml:msub> </mml:math> let $$mu _f(alpha ;X,0)$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:msub> <mml:mi>μ</mml:mi> <mml:mi>f</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>α</mml:mi> <mml:mo>;</mml:mo> <mml:mi>X</mml:mi> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> be the number of critical points on $${mathscr {S}}_alpha $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msub> <mml:mi>S</mml:mi> <mml:mi>α</mml:mi> </mml:msub> </mml:math> in a morsification of f |( X , 0). We show that the numbers $$mu _f(alpha ;X,0)$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:msub> <mml:mi>μ</mml:mi> <mml:mi>f</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>α</mml:mi> <mml:mo>;</mml:mo> <mml:mi>X</mml:mi> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> generalize the classical Milnor number in all of the four characterizations above. To this end, we describe a homology decomposition of the Milnor fiber $$M_{f|(X,0)}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msub> <mml:mi>M</mml:mi> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>|</mml:mo> <mml:mo>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msub> </mml:math> in terms of the $$mu _f(alpha ;X,0)$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:msub> <mml:mi>μ</mml:mi> <mml:mi>f</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>α</mml:mi> <mml:mo>;</mml:mo> <mml:mi>X</mml:mi> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> and introduce a new homological index which computes these numbers directly as a holomorphic Euler characteristic. We furthermore give an algorithm for this computation when the closure of the stratum is a hypersurface." @default.
- W3186948169 created "2021-08-02" @default.
- W3186948169 creator A5088275376 @default.
- W3186948169 date "2021-07-23" @default.
- W3186948169 modified "2023-10-17" @default.
- W3186948169 title "A generalization of Milnor’s formula" @default.
- W3186948169 cites W1746675527 @default.
- W3186948169 cites W1976017026 @default.
- W3186948169 cites W1993704622 @default.
- W3186948169 cites W1994784816 @default.
- W3186948169 cites W1994955844 @default.
- W3186948169 cites W2051622638 @default.
- W3186948169 cites W2053172967 @default.
- W3186948169 cites W2058693725 @default.
- W3186948169 cites W2077316165 @default.
- W3186948169 cites W2088156003 @default.
- W3186948169 cites W2092863486 @default.
- W3186948169 cites W2094313070 @default.
- W3186948169 cites W2119166115 @default.
- W3186948169 cites W2157942626 @default.
- W3186948169 cites W224480016 @default.
- W3186948169 cites W2486138006 @default.
- W3186948169 cites W2912836440 @default.
- W3186948169 cites W4206311976 @default.
- W3186948169 cites W4248269519 @default.
- W3186948169 cites W4300166240 @default.
- W3186948169 cites W4300596011 @default.
- W3186948169 cites W9256782 @default.
- W3186948169 doi "https://doi.org/10.1007/s00208-021-02223-5" @default.
- W3186948169 hasPublicationYear "2021" @default.
- W3186948169 type Work @default.
- W3186948169 sameAs 3186948169 @default.
- W3186948169 citedByCount "2" @default.
- W3186948169 countsByYear W31869481692023 @default.
- W3186948169 crossrefType "journal-article" @default.
- W3186948169 hasAuthorship W3186948169A5088275376 @default.
- W3186948169 hasBestOaLocation W31869481691 @default.
- W3186948169 hasConcept C11413529 @default.
- W3186948169 hasConcept C154945302 @default.
- W3186948169 hasConcept C41008148 @default.
- W3186948169 hasConceptScore W3186948169C11413529 @default.
- W3186948169 hasConceptScore W3186948169C154945302 @default.
- W3186948169 hasConceptScore W3186948169C41008148 @default.
- W3186948169 hasFunder F4320322379 @default.
- W3186948169 hasIssue "1-2" @default.
- W3186948169 hasLocation W31869481691 @default.
- W3186948169 hasLocation W31869481692 @default.
- W3186948169 hasOpenAccess W3186948169 @default.
- W3186948169 hasPrimaryLocation W31869481691 @default.
- W3186948169 hasRelatedWork W2051487156 @default.
- W3186948169 hasRelatedWork W2052122378 @default.
- W3186948169 hasRelatedWork W2053286651 @default.
- W3186948169 hasRelatedWork W2073681303 @default.
- W3186948169 hasRelatedWork W2317200988 @default.
- W3186948169 hasRelatedWork W2544423928 @default.
- W3186948169 hasRelatedWork W2947381795 @default.
- W3186948169 hasRelatedWork W2181413294 @default.
- W3186948169 hasRelatedWork W2181743346 @default.
- W3186948169 hasRelatedWork W2187401768 @default.
- W3186948169 hasVolume "382" @default.
- W3186948169 isParatext "false" @default.
- W3186948169 isRetracted "false" @default.
- W3186948169 magId "3186948169" @default.
- W3186948169 workType "article" @default.