Matches in SemOpenAlex for { <https://semopenalex.org/work/W3187047132> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W3187047132 abstract "As smartphone adoption is happening at a rapid rate, its threat landscape is also widening. Android is a popular smartphone Operating System (OS) which was subject to many malware attacks in recent years, compromising the privacy and security of its users. Although many works are developed to detect Android malware, few use graphs extracted from the Android Package (APK) directly as an input to the deep learning model due to the lack of suitable architectures. Graph Convolutional Networks (GCNs) are becoming a popular architecture in the deep learning community that can directly take a graph as an input. However, their applicability to Android malware detection is less explored. To bridge this gap, this work proposes an Android malware detection model using GCNs based on Function Call Graph (FCG). FCG captures the caller-callee relationships between the methods inside an APK as a directed graph. Every node in FCG is assigned a feature vector that represents its characteristics. To evaluate the performance of the proposed model, a set of experiments is conducted by varying GCN algorithms, node features and the number of GCN layers in the model. A recent Android malware dataset is used to conduct experiments. As GCNs consider the node count of the FCG, the dataset is balanced using a new technique to make node count distributions of benign and malware APKs similar. As a result of these experiments, the maximum accuracy of 92.29% with the F1-score of 0.9223 is obtained, suggesting that the GCNs have the potential to detect Android malware." @default.
- W3187047132 created "2021-08-02" @default.
- W3187047132 creator A5052329854 @default.
- W3187047132 creator A5054016512 @default.
- W3187047132 date "2021-05-21" @default.
- W3187047132 modified "2023-09-27" @default.
- W3187047132 title "Android Malware Detection using Function Call Graph with Graph Convolutional Networks" @default.
- W3187047132 cites W2122672392 @default.
- W3187047132 cites W2725069636 @default.
- W3187047132 cites W2786016794 @default.
- W3187047132 cites W2890110856 @default.
- W3187047132 cites W2901033482 @default.
- W3187047132 cites W2966342255 @default.
- W3187047132 cites W2972659368 @default.
- W3187047132 cites W2980139868 @default.
- W3187047132 cites W2992853260 @default.
- W3187047132 cites W3000082418 @default.
- W3187047132 cites W3000239448 @default.
- W3187047132 cites W3000676611 @default.
- W3187047132 cites W3002335747 @default.
- W3187047132 cites W3004549544 @default.
- W3187047132 cites W3023107948 @default.
- W3187047132 cites W3097192014 @default.
- W3187047132 cites W3100848837 @default.
- W3187047132 cites W3105429705 @default.
- W3187047132 cites W3106439716 @default.
- W3187047132 doi "https://doi.org/10.1109/icsccc51823.2021.9478141" @default.
- W3187047132 hasPublicationYear "2021" @default.
- W3187047132 type Work @default.
- W3187047132 sameAs 3187047132 @default.
- W3187047132 citedByCount "2" @default.
- W3187047132 countsByYear W31870471322023 @default.
- W3187047132 crossrefType "proceedings-article" @default.
- W3187047132 hasAuthorship W3187047132A5052329854 @default.
- W3187047132 hasAuthorship W3187047132A5054016512 @default.
- W3187047132 hasConcept C111919701 @default.
- W3187047132 hasConcept C119857082 @default.
- W3187047132 hasConcept C132525143 @default.
- W3187047132 hasConcept C154945302 @default.
- W3187047132 hasConcept C2778579508 @default.
- W3187047132 hasConcept C2989133298 @default.
- W3187047132 hasConcept C38652104 @default.
- W3187047132 hasConcept C41008148 @default.
- W3187047132 hasConcept C541664917 @default.
- W3187047132 hasConcept C557433098 @default.
- W3187047132 hasConcept C80444323 @default.
- W3187047132 hasConceptScore W3187047132C111919701 @default.
- W3187047132 hasConceptScore W3187047132C119857082 @default.
- W3187047132 hasConceptScore W3187047132C132525143 @default.
- W3187047132 hasConceptScore W3187047132C154945302 @default.
- W3187047132 hasConceptScore W3187047132C2778579508 @default.
- W3187047132 hasConceptScore W3187047132C2989133298 @default.
- W3187047132 hasConceptScore W3187047132C38652104 @default.
- W3187047132 hasConceptScore W3187047132C41008148 @default.
- W3187047132 hasConceptScore W3187047132C541664917 @default.
- W3187047132 hasConceptScore W3187047132C557433098 @default.
- W3187047132 hasConceptScore W3187047132C80444323 @default.
- W3187047132 hasLocation W31870471321 @default.
- W3187047132 hasOpenAccess W3187047132 @default.
- W3187047132 hasPrimaryLocation W31870471321 @default.
- W3187047132 hasRelatedWork W2103277078 @default.
- W3187047132 hasRelatedWork W2249551771 @default.
- W3187047132 hasRelatedWork W2485784239 @default.
- W3187047132 hasRelatedWork W2587310853 @default.
- W3187047132 hasRelatedWork W2803049783 @default.
- W3187047132 hasRelatedWork W2899515883 @default.
- W3187047132 hasRelatedWork W2945522736 @default.
- W3187047132 hasRelatedWork W3012546138 @default.
- W3187047132 hasRelatedWork W3168858087 @default.
- W3187047132 hasRelatedWork W4291961149 @default.
- W3187047132 isParatext "false" @default.
- W3187047132 isRetracted "false" @default.
- W3187047132 magId "3187047132" @default.
- W3187047132 workType "article" @default.