Matches in SemOpenAlex for { <https://semopenalex.org/work/W3187077975> ?p ?o ?g. }
- W3187077975 endingPage "434" @default.
- W3187077975 startingPage "411" @default.
- W3187077975 abstract "Purpose Owing to the uneven distribution of annotated corpus among different languages, it is necessary to bridge the gap between low resource languages and high resource languages. From the perspective of entity relation extraction, this paper aims to extend the knowledge acquisition task from a single language context to a cross-lingual context, and to improve the relation extraction performance for low resource languages. Design/methodology/approach This paper proposes a cross-lingual adversarial relation extraction (CLARE) framework, which decomposes cross-lingual relation extraction into parallel corpus acquisition and adversarial adaptation relation extraction. Based on the proposed framework, this paper conducts extensive experiments in two tasks, i.e. the English-to-Chinese and the English-to-Arabic cross-lingual entity relation extraction. Findings The Macro-F1 values of the optimal models in the two tasks are 0.880 1 and 0.789 9, respectively, indicating that the proposed CLARE framework for CLARE can significantly improve the effect of low resource language entity relation extraction. The experimental results suggest that the proposed framework can effectively transfer the corpus as well as the annotated tags from English to Chinese and Arabic. This study reveals that the proposed approach is less human labour intensive and more effective in the cross-lingual entity relation extraction than the manual method. It shows that this approach has high generalizability among different languages. Originality/value The research results are of great significance for improving the performance of the cross-lingual knowledge acquisition. The cross-lingual transfer may greatly reduce the time and cost of the manual construction of the multi-lingual corpus. It sheds light on the knowledge acquisition and organization from the unstructured text in the era of big data." @default.
- W3187077975 created "2021-08-16" @default.
- W3187077975 creator A5023876910 @default.
- W3187077975 creator A5052010052 @default.
- W3187077975 creator A5068798602 @default.
- W3187077975 creator A5081754547 @default.
- W3187077975 date "2021-08-03" @default.
- W3187077975 modified "2023-09-24" @default.
- W3187077975 title "Towards an entity relation extraction framework in the cross-lingual context" @default.
- W3187077975 cites W1988576742 @default.
- W3187077975 cites W2041319220 @default.
- W3187077975 cites W2058756906 @default.
- W3187077975 cites W2065412387 @default.
- W3187077975 cites W2068931720 @default.
- W3187077975 cites W2071305045 @default.
- W3187077975 cites W2564128506 @default.
- W3187077975 cites W2588408640 @default.
- W3187077975 cites W2754161007 @default.
- W3187077975 cites W2800905795 @default.
- W3187077975 cites W2884668708 @default.
- W3187077975 cites W2947596730 @default.
- W3187077975 cites W2964298336 @default.
- W3187077975 cites W2999692125 @default.
- W3187077975 cites W3043971138 @default.
- W3187077975 cites W3049253296 @default.
- W3187077975 cites W3092142868 @default.
- W3187077975 cites W3137010525 @default.
- W3187077975 doi "https://doi.org/10.1108/el-10-2020-0304" @default.
- W3187077975 hasPublicationYear "2021" @default.
- W3187077975 type Work @default.
- W3187077975 sameAs 3187077975 @default.
- W3187077975 citedByCount "1" @default.
- W3187077975 countsByYear W31870779752022 @default.
- W3187077975 crossrefType "journal-article" @default.
- W3187077975 hasAuthorship W3187077975A5023876910 @default.
- W3187077975 hasAuthorship W3187077975A5052010052 @default.
- W3187077975 hasAuthorship W3187077975A5068798602 @default.
- W3187077975 hasAuthorship W3187077975A5081754547 @default.
- W3187077975 hasConcept C105795698 @default.
- W3187077975 hasConcept C11012388 @default.
- W3187077975 hasConcept C124101348 @default.
- W3187077975 hasConcept C151730666 @default.
- W3187077975 hasConcept C153604712 @default.
- W3187077975 hasConcept C154945302 @default.
- W3187077975 hasConcept C162324750 @default.
- W3187077975 hasConcept C17744445 @default.
- W3187077975 hasConcept C187736073 @default.
- W3187077975 hasConcept C195807954 @default.
- W3187077975 hasConcept C199539241 @default.
- W3187077975 hasConcept C204321447 @default.
- W3187077975 hasConcept C25343380 @default.
- W3187077975 hasConcept C27158222 @default.
- W3187077975 hasConcept C2776950860 @default.
- W3187077975 hasConcept C2779343474 @default.
- W3187077975 hasConcept C2780451532 @default.
- W3187077975 hasConcept C33923547 @default.
- W3187077975 hasConcept C37736160 @default.
- W3187077975 hasConcept C41008148 @default.
- W3187077975 hasConcept C86803240 @default.
- W3187077975 hasConceptScore W3187077975C105795698 @default.
- W3187077975 hasConceptScore W3187077975C11012388 @default.
- W3187077975 hasConceptScore W3187077975C124101348 @default.
- W3187077975 hasConceptScore W3187077975C151730666 @default.
- W3187077975 hasConceptScore W3187077975C153604712 @default.
- W3187077975 hasConceptScore W3187077975C154945302 @default.
- W3187077975 hasConceptScore W3187077975C162324750 @default.
- W3187077975 hasConceptScore W3187077975C17744445 @default.
- W3187077975 hasConceptScore W3187077975C187736073 @default.
- W3187077975 hasConceptScore W3187077975C195807954 @default.
- W3187077975 hasConceptScore W3187077975C199539241 @default.
- W3187077975 hasConceptScore W3187077975C204321447 @default.
- W3187077975 hasConceptScore W3187077975C25343380 @default.
- W3187077975 hasConceptScore W3187077975C27158222 @default.
- W3187077975 hasConceptScore W3187077975C2776950860 @default.
- W3187077975 hasConceptScore W3187077975C2779343474 @default.
- W3187077975 hasConceptScore W3187077975C2780451532 @default.
- W3187077975 hasConceptScore W3187077975C33923547 @default.
- W3187077975 hasConceptScore W3187077975C37736160 @default.
- W3187077975 hasConceptScore W3187077975C41008148 @default.
- W3187077975 hasConceptScore W3187077975C86803240 @default.
- W3187077975 hasIssue "3" @default.
- W3187077975 hasLocation W31870779751 @default.
- W3187077975 hasOpenAccess W3187077975 @default.
- W3187077975 hasPrimaryLocation W31870779751 @default.
- W3187077975 hasRelatedWork W1515542156 @default.
- W3187077975 hasRelatedWork W2368651715 @default.
- W3187077975 hasRelatedWork W2753023842 @default.
- W3187077975 hasRelatedWork W2806121831 @default.
- W3187077975 hasRelatedWork W3002472320 @default.
- W3187077975 hasRelatedWork W3082447286 @default.
- W3187077975 hasRelatedWork W3114114934 @default.
- W3187077975 hasRelatedWork W3201556757 @default.
- W3187077975 hasRelatedWork W4287682749 @default.
- W3187077975 hasRelatedWork W4307322379 @default.
- W3187077975 hasVolume "39" @default.
- W3187077975 isParatext "false" @default.
- W3187077975 isRetracted "false" @default.
- W3187077975 magId "3187077975" @default.