Matches in SemOpenAlex for { <https://semopenalex.org/work/W3187182912> ?p ?o ?g. }
- W3187182912 endingPage "15" @default.
- W3187182912 startingPage "1" @default.
- W3187182912 abstract "A multivariate distribution can be described by a triangular transport map from the target distribution to a simple reference distribution. We propose Bayesian nonparametric inference on the transport map by modeling its components using Gaussian processes. This enables regularization and uncertainty quantification of the map estimation, while resulting in a closed-form and invertible posterior map. We then focus on inferring the distribution of a nonstationary spatial field from a small number of replicates. We develop specific transport-map priors that are highly flexible and are motivated by the behavior of a large class of stochastic processes. Our approach is scalable to high-dimensional distributions due to data-dependent sparsity and parallel computations. We also discuss extensions, including Dirichlet process mixtures for flexible marginals. We present numerical results to demonstrate the accuracy, scalability, and usefulness of our methods, including statistical emulation of non-Gaussian climate-model output. Supplementary materials for this article are available online." @default.
- W3187182912 created "2021-08-16" @default.
- W3187182912 creator A5038477614 @default.
- W3187182912 creator A5059714266 @default.
- W3187182912 date "2023-05-02" @default.
- W3187182912 modified "2023-10-09" @default.
- W3187182912 title "Scalable Bayesian Transport Maps for High-Dimensional Non-Gaussian Spatial Fields" @default.
- W3187182912 cites W1898904249 @default.
- W3187182912 cites W1960265583 @default.
- W3187182912 cites W1995565517 @default.
- W3187182912 cites W2018779695 @default.
- W3187182912 cites W2023103251 @default.
- W3187182912 cites W2025540709 @default.
- W3187182912 cites W2046528357 @default.
- W3187182912 cites W2059983627 @default.
- W3187182912 cites W2066937586 @default.
- W3187182912 cites W2071379353 @default.
- W3187182912 cites W2079321251 @default.
- W3187182912 cites W2093965236 @default.
- W3187182912 cites W2125634634 @default.
- W3187182912 cites W2295695367 @default.
- W3187182912 cites W2331024206 @default.
- W3187182912 cites W2464727076 @default.
- W3187182912 cites W2469805270 @default.
- W3187182912 cites W2470916415 @default.
- W3187182912 cites W2496675188 @default.
- W3187182912 cites W2569729041 @default.
- W3187182912 cites W2728352477 @default.
- W3187182912 cites W2757121823 @default.
- W3187182912 cites W2936974954 @default.
- W3187182912 cites W2964191000 @default.
- W3187182912 cites W2992005611 @default.
- W3187182912 cites W3046636807 @default.
- W3187182912 cites W3048803434 @default.
- W3187182912 cites W3098382412 @default.
- W3187182912 cites W3098700198 @default.
- W3187182912 cites W3100268967 @default.
- W3187182912 cites W3105627363 @default.
- W3187182912 cites W3114272883 @default.
- W3187182912 cites W3133294546 @default.
- W3187182912 cites W3156927273 @default.
- W3187182912 cites W3158707516 @default.
- W3187182912 cites W3168833755 @default.
- W3187182912 cites W3173598035 @default.
- W3187182912 cites W3189610876 @default.
- W3187182912 cites W4210794292 @default.
- W3187182912 cites W4213041519 @default.
- W3187182912 cites W4231888390 @default.
- W3187182912 cites W4233762729 @default.
- W3187182912 cites W4361212565 @default.
- W3187182912 cites W54587910 @default.
- W3187182912 doi "https://doi.org/10.1080/01621459.2023.2197158" @default.
- W3187182912 hasPublicationYear "2023" @default.
- W3187182912 type Work @default.
- W3187182912 sameAs 3187182912 @default.
- W3187182912 citedByCount "0" @default.
- W3187182912 crossrefType "journal-article" @default.
- W3187182912 hasAuthorship W3187182912A5038477614 @default.
- W3187182912 hasAuthorship W3187182912A5059714266 @default.
- W3187182912 hasBestOaLocation W31871829121 @default.
- W3187182912 hasConcept C107673813 @default.
- W3187182912 hasConcept C11413529 @default.
- W3187182912 hasConcept C121332964 @default.
- W3187182912 hasConcept C134306372 @default.
- W3187182912 hasConcept C154945302 @default.
- W3187182912 hasConcept C160234255 @default.
- W3187182912 hasConcept C163716315 @default.
- W3187182912 hasConcept C169214877 @default.
- W3187182912 hasConcept C177769412 @default.
- W3187182912 hasConcept C182310444 @default.
- W3187182912 hasConcept C2781280628 @default.
- W3187182912 hasConcept C33923547 @default.
- W3187182912 hasConcept C41008148 @default.
- W3187182912 hasConcept C48044578 @default.
- W3187182912 hasConcept C57830394 @default.
- W3187182912 hasConcept C61326573 @default.
- W3187182912 hasConcept C62520636 @default.
- W3187182912 hasConcept C77088390 @default.
- W3187182912 hasConceptScore W3187182912C107673813 @default.
- W3187182912 hasConceptScore W3187182912C11413529 @default.
- W3187182912 hasConceptScore W3187182912C121332964 @default.
- W3187182912 hasConceptScore W3187182912C134306372 @default.
- W3187182912 hasConceptScore W3187182912C154945302 @default.
- W3187182912 hasConceptScore W3187182912C160234255 @default.
- W3187182912 hasConceptScore W3187182912C163716315 @default.
- W3187182912 hasConceptScore W3187182912C169214877 @default.
- W3187182912 hasConceptScore W3187182912C177769412 @default.
- W3187182912 hasConceptScore W3187182912C182310444 @default.
- W3187182912 hasConceptScore W3187182912C2781280628 @default.
- W3187182912 hasConceptScore W3187182912C33923547 @default.
- W3187182912 hasConceptScore W3187182912C41008148 @default.
- W3187182912 hasConceptScore W3187182912C48044578 @default.
- W3187182912 hasConceptScore W3187182912C57830394 @default.
- W3187182912 hasConceptScore W3187182912C61326573 @default.
- W3187182912 hasConceptScore W3187182912C62520636 @default.
- W3187182912 hasConceptScore W3187182912C77088390 @default.
- W3187182912 hasFunder F4320306076 @default.
- W3187182912 hasFunder F4320306101 @default.