Matches in SemOpenAlex for { <https://semopenalex.org/work/W3187200397> ?p ?o ?g. }
- W3187200397 abstract "Ceramic materials are natural or synthetic, inorganic, non-metallic materials incorporating ionic and covalent bonding. Most ceramics in use are polycrystalline materials where grains are connected by a network of solid-solid interfaces called grain boundaries. The structure of the grain boundaries and their arrangement play a key role in determining materials properties. Developing a fundamental understanding of the formation, structure, migration and methods of control grain boundaries have drawn the interest of scientists for over a century. While grain boundaries were initially treated as isotropic, advances in materials science has expanded to include energetically anisotropic boundaries. The orientation and structure of a grain boundary, determined by this anisotropy, controls the mobility of a grain boundary. The mobility is the controlling factor during grain growth impacting the microstructural evolution of a material. This thesis covers fundamental research to model how a materials’ equilibrium crystal shape can be used as a grain growth control mechanism. First an overview of ceramic processing and microstructural development is presented with a focus on the role of grain boundaries in determining the properties of a material. The role of anisotropy and related recent work is highlighted setting the foundation for the link between the equilibrium crystal shape and grain growth. A discussion on the selection of the NiO-MgO system for all experimental work is included. A novel production and processing route for NiO-MgO was developed. Mechanical alloying and milling resulted in significant impurity contamination therefore a chemical production route was used. A modified amorphous citrate process was developed where metal salts containing Ni and Mg were mixed with a polyfunctional organic acid. Rapid dehydration and calcination at 500°C resulted in chemically homogeneous powders. The amorphous citrate production route produced powder with crystallites ranging from 244-393 nm and agglomerates ranging from 20-300 μm with plate-like morphology. NiO-MgO powders produced via the amorphous citrate method were sintered using various techniques. Conventional sintering was unable to produce fully dense samples peaking with relative densities from 95-96%. The introduction of pressure through spark plasma sintering and hot pressing improved the relative sample density to 97-100%. It was discovered that exposure to the vacuum required for spark plasma sintering and hot pressing resulted in the reduction of NiO. Spark plasma sintering created oxygen depleted regions and hot pressing further reduced NiO to pure nickel metal which precipitated out at the grain boundaries. Due to the poor sintering behavior of NiO-MgO grain growth experiments were carried out on the large agglomerates formed during the amorphous citrate process. Agglomerates with more than 50 grains with a thickness of at least 1 μm were selected. Grain growth was measured across five compositions with Ni:Mg ratios of 100:0, 75:25, 50:50, 25:75, 0:100. The average grain size and growth rate increased with increasing nickel content with a significant jump between 50% and 75%. Increasing nickel content was also observed to correspond with a higher number of grains exhibiting surface faceting. The NiO-MgO equilibrium crystal shape as a function of composition was measured previously. To make the equilibrium crystal shape a more viable control for grain growth a quantitative microstructural characterization technique was developed to measure a materials equilibrium crystal shape. Topographic surface information (surface facets measured by atomic force microscopy, AFM) and grain crystallographic orientation (measured by electron back-scattered diffraction, EBSD) were combined to produce the crystallographic topography of a sample surface. Surface crystallographic topography was used to identify the faceting behavior of grains with a range of orientations. Using the combined data, facet stability maps (n diagrams) for NiO-MgO were developed. Controlling grain growth via the equilibrium crystal shape offers the potential to produce microstructures with a high frequency of desirable grain boundaries (grain boundary engineering) and therefore properties. The combination of using AFM and EBSD to create crystallographic topographical surface data and n-diagrams has been demonstrated. N-diagrams for most materials do not exist, but the technique used here can be applied to a wide range of materials and will expand the ability to control microstructures of ceramic materials." @default.
- W3187200397 created "2021-08-16" @default.
- W3187200397 creator A5042128983 @default.
- W3187200397 date "2019-01-17" @default.
- W3187200397 modified "2023-09-23" @default.
- W3187200397 title "MICROSTRUCTURAL EVOLUTION IN NiO-MgO: LINKING EQUILIBRIUM CRYSTAL SHAPE AND GRAIN GROWTH" @default.
- W3187200397 cites W1572130436 @default.
- W3187200397 cites W1971258871 @default.
- W3187200397 cites W1979026251 @default.
- W3187200397 cites W1982295247 @default.
- W3187200397 cites W1987774814 @default.
- W3187200397 cites W1994149827 @default.
- W3187200397 cites W1996758692 @default.
- W3187200397 cites W2002623628 @default.
- W3187200397 cites W2013282612 @default.
- W3187200397 cites W2031471161 @default.
- W3187200397 cites W2034057897 @default.
- W3187200397 cites W2036413962 @default.
- W3187200397 cites W2044403908 @default.
- W3187200397 cites W2045850668 @default.
- W3187200397 cites W2048096927 @default.
- W3187200397 cites W2052444062 @default.
- W3187200397 cites W2059997833 @default.
- W3187200397 cites W2060429741 @default.
- W3187200397 cites W2061078331 @default.
- W3187200397 cites W2067569032 @default.
- W3187200397 cites W2072484949 @default.
- W3187200397 cites W2082275757 @default.
- W3187200397 cites W2091091868 @default.
- W3187200397 cites W2092541104 @default.
- W3187200397 cites W2107229240 @default.
- W3187200397 cites W2122948512 @default.
- W3187200397 cites W2140537393 @default.
- W3187200397 cites W2147611880 @default.
- W3187200397 cites W2175667136 @default.
- W3187200397 cites W2301786503 @default.
- W3187200397 cites W2321214958 @default.
- W3187200397 cites W2343882018 @default.
- W3187200397 cites W2402029142 @default.
- W3187200397 cites W2507092043 @default.
- W3187200397 cites W2551720166 @default.
- W3187200397 cites W294074445 @default.
- W3187200397 cites W563626144 @default.
- W3187200397 cites W593863459 @default.
- W3187200397 doi "https://doi.org/10.25394/pgs.7418357.v1" @default.
- W3187200397 hasPublicationYear "2019" @default.
- W3187200397 type Work @default.
- W3187200397 sameAs 3187200397 @default.
- W3187200397 citedByCount "0" @default.
- W3187200397 crossrefType "dissertation" @default.
- W3187200397 hasAuthorship W3187200397A5042128983 @default.
- W3187200397 hasConcept C121332964 @default.
- W3187200397 hasConcept C134132462 @default.
- W3187200397 hasConcept C137637335 @default.
- W3187200397 hasConcept C145148216 @default.
- W3187200397 hasConcept C159467904 @default.
- W3187200397 hasConcept C178790620 @default.
- W3187200397 hasConcept C184050105 @default.
- W3187200397 hasConcept C185592680 @default.
- W3187200397 hasConcept C191897082 @default.
- W3187200397 hasConcept C192191005 @default.
- W3187200397 hasConcept C192562407 @default.
- W3187200397 hasConcept C2182769 @default.
- W3187200397 hasConcept C47908070 @default.
- W3187200397 hasConcept C56052488 @default.
- W3187200397 hasConcept C62520636 @default.
- W3187200397 hasConcept C8010536 @default.
- W3187200397 hasConcept C84838300 @default.
- W3187200397 hasConcept C85725439 @default.
- W3187200397 hasConcept C87976508 @default.
- W3187200397 hasConcept C98390173 @default.
- W3187200397 hasConceptScore W3187200397C121332964 @default.
- W3187200397 hasConceptScore W3187200397C134132462 @default.
- W3187200397 hasConceptScore W3187200397C137637335 @default.
- W3187200397 hasConceptScore W3187200397C145148216 @default.
- W3187200397 hasConceptScore W3187200397C159467904 @default.
- W3187200397 hasConceptScore W3187200397C178790620 @default.
- W3187200397 hasConceptScore W3187200397C184050105 @default.
- W3187200397 hasConceptScore W3187200397C185592680 @default.
- W3187200397 hasConceptScore W3187200397C191897082 @default.
- W3187200397 hasConceptScore W3187200397C192191005 @default.
- W3187200397 hasConceptScore W3187200397C192562407 @default.
- W3187200397 hasConceptScore W3187200397C2182769 @default.
- W3187200397 hasConceptScore W3187200397C47908070 @default.
- W3187200397 hasConceptScore W3187200397C56052488 @default.
- W3187200397 hasConceptScore W3187200397C62520636 @default.
- W3187200397 hasConceptScore W3187200397C8010536 @default.
- W3187200397 hasConceptScore W3187200397C84838300 @default.
- W3187200397 hasConceptScore W3187200397C85725439 @default.
- W3187200397 hasConceptScore W3187200397C87976508 @default.
- W3187200397 hasConceptScore W3187200397C98390173 @default.
- W3187200397 hasLocation W31872003971 @default.
- W3187200397 hasOpenAccess W3187200397 @default.
- W3187200397 hasPrimaryLocation W31872003971 @default.
- W3187200397 hasRelatedWork W11088192 @default.
- W3187200397 hasRelatedWork W1520235866 @default.
- W3187200397 hasRelatedWork W1531384720 @default.
- W3187200397 hasRelatedWork W1863949757 @default.
- W3187200397 hasRelatedWork W1994874652 @default.
- W3187200397 hasRelatedWork W2001784905 @default.