Matches in SemOpenAlex for { <https://semopenalex.org/work/W3187426677> ?p ?o ?g. }
- W3187426677 abstract "BACKGROUND: Despite advances in endoscopic transnasal transsphenoidal surgery (E-TNS) for pituitary adenomas (PAs), cerebrospinal fluid (CSF) leakage remains a life-threatening complication predisposing to major morbidity and mortality. In the current study we developed a supervised ML model able to predict the risk of intraoperative CSF leakage by comparing different machine learning (ML) methods and explaining the functioning and the rationale of the best performing algorithm.METHODS: A retrospective cohort of 238 patients treated via E-TNS for PAs was selected. A customized pipeline of several ML models was programmed and trained; the best five models were tested on a hold-out test and the best classifier was then prospectively validated on a cohort of 35 recently treated patients.RESULTS: Intraoperative CSF leak occurred in 54 (22,6%) of 238 patients. The most important risk’s predictors were: non secreting status, older age, x-, y- and z-axes diameters, ostedural invasiveness, volume, ICD and R-ratio. The random forest (RF) classifier outperformed other models, with an AUC of 0.84, high sensitivity (86%) and specificity (88%). Positive predictive value and negative predictive value were 88% and 80% respectively. F1 score was 0.84. Prospective validation confirmed outstanding performance metrics: AUC (0.81), sensitivity (83%), specificity (79%), negative predictive value (95%) and F1 score (0.75).CONCLUSIONS: The RF classifier showed the best performance across all models selected. RF models might predict surgical outcomes in heterogeneous multimorbid and fragile populations outperforming classical statistical analyses and other ML models (SVM, ANN etc.), improving patient management and reducing preventable morbidity and additional costs." @default.
- W3187426677 created "2021-08-16" @default.
- W3187426677 creator A5001280323 @default.
- W3187426677 creator A5006879837 @default.
- W3187426677 creator A5013668952 @default.
- W3187426677 creator A5029381127 @default.
- W3187426677 creator A5029689484 @default.
- W3187426677 creator A5034261591 @default.
- W3187426677 creator A5037434863 @default.
- W3187426677 creator A5041047248 @default.
- W3187426677 creator A5044251515 @default.
- W3187426677 creator A5044615622 @default.
- W3187426677 creator A5052836498 @default.
- W3187426677 creator A5064669371 @default.
- W3187426677 creator A5091576768 @default.
- W3187426677 date "2023-07-01" @default.
- W3187426677 modified "2023-09-29" @default.
- W3187426677 title "A supervised machine-learning algorithm predicts intraoperative CSF leak in endoscopic transsphenoidal surgery for pituitary adenomas" @default.
- W3187426677 cites W1520726092 @default.
- W3187426677 cites W1700449338 @default.
- W3187426677 cites W1905165981 @default.
- W3187426677 cites W1984510790 @default.
- W3187426677 cites W1991426267 @default.
- W3187426677 cites W1992100107 @default.
- W3187426677 cites W2011108735 @default.
- W3187426677 cites W2054364722 @default.
- W3187426677 cites W2062693648 @default.
- W3187426677 cites W2079519845 @default.
- W3187426677 cites W2109676405 @default.
- W3187426677 cites W2118822979 @default.
- W3187426677 cites W2129018774 @default.
- W3187426677 cites W2142504546 @default.
- W3187426677 cites W2148143831 @default.
- W3187426677 cites W2403268446 @default.
- W3187426677 cites W2517378513 @default.
- W3187426677 cites W2744265819 @default.
- W3187426677 cites W2755566641 @default.
- W3187426677 cites W2757031456 @default.
- W3187426677 cites W2766300505 @default.
- W3187426677 cites W2766438525 @default.
- W3187426677 cites W2794434368 @default.
- W3187426677 cites W2941286247 @default.
- W3187426677 cites W2954583151 @default.
- W3187426677 cites W2963847595 @default.
- W3187426677 cites W2968184507 @default.
- W3187426677 cites W2977436523 @default.
- W3187426677 cites W2991719783 @default.
- W3187426677 cites W2998024276 @default.
- W3187426677 cites W3012511890 @default.
- W3187426677 cites W3044219624 @default.
- W3187426677 cites W3044530853 @default.
- W3187426677 cites W3070313384 @default.
- W3187426677 doi "https://doi.org/10.23736/s0390-5616.21.05295-4" @default.
- W3187426677 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34342190" @default.
- W3187426677 hasPublicationYear "2023" @default.
- W3187426677 type Work @default.
- W3187426677 sameAs 3187426677 @default.
- W3187426677 citedByCount "2" @default.
- W3187426677 countsByYear W31874266772022 @default.
- W3187426677 countsByYear W31874266772023 @default.
- W3187426677 crossrefType "journal-article" @default.
- W3187426677 hasAuthorship W3187426677A5001280323 @default.
- W3187426677 hasAuthorship W3187426677A5006879837 @default.
- W3187426677 hasAuthorship W3187426677A5013668952 @default.
- W3187426677 hasAuthorship W3187426677A5029381127 @default.
- W3187426677 hasAuthorship W3187426677A5029689484 @default.
- W3187426677 hasAuthorship W3187426677A5034261591 @default.
- W3187426677 hasAuthorship W3187426677A5037434863 @default.
- W3187426677 hasAuthorship W3187426677A5041047248 @default.
- W3187426677 hasAuthorship W3187426677A5044251515 @default.
- W3187426677 hasAuthorship W3187426677A5044615622 @default.
- W3187426677 hasAuthorship W3187426677A5052836498 @default.
- W3187426677 hasAuthorship W3187426677A5064669371 @default.
- W3187426677 hasAuthorship W3187426677A5091576768 @default.
- W3187426677 hasConcept C119857082 @default.
- W3187426677 hasConcept C126322002 @default.
- W3187426677 hasConcept C127413603 @default.
- W3187426677 hasConcept C141071460 @default.
- W3187426677 hasConcept C151956035 @default.
- W3187426677 hasConcept C169258074 @default.
- W3187426677 hasConcept C188816634 @default.
- W3187426677 hasConcept C198433322 @default.
- W3187426677 hasConcept C2777428134 @default.
- W3187426677 hasConcept C2779115750 @default.
- W3187426677 hasConcept C2779318953 @default.
- W3187426677 hasConcept C2779651940 @default.
- W3187426677 hasConcept C2779653919 @default.
- W3187426677 hasConcept C2780378346 @default.
- W3187426677 hasConcept C2909079918 @default.
- W3187426677 hasConcept C3019719930 @default.
- W3187426677 hasConcept C41008148 @default.
- W3187426677 hasConcept C58471807 @default.
- W3187426677 hasConcept C71924100 @default.
- W3187426677 hasConcept C72563966 @default.
- W3187426677 hasConcept C87717796 @default.
- W3187426677 hasConceptScore W3187426677C119857082 @default.
- W3187426677 hasConceptScore W3187426677C126322002 @default.
- W3187426677 hasConceptScore W3187426677C127413603 @default.
- W3187426677 hasConceptScore W3187426677C141071460 @default.
- W3187426677 hasConceptScore W3187426677C151956035 @default.