Matches in SemOpenAlex for { <https://semopenalex.org/work/W3187580752> ?p ?o ?g. }
- W3187580752 abstract "The aortic vessel tree is composed of the aorta and its branching arteries, and plays a key role in supplying the whole body with blood. Aortic diseases, like aneurysms or dissections, can lead to an aortic rupture, whose treatment with open surgery is highly risky. Therefore, patients commonly undergo drug treatment under constant monitoring, which requires regular inspections of the vessels through imaging. The standard imaging modality for diagnosis and monitoring is computed tomography (CT), which can provide a detailed picture of the aorta and its branching vessels if completed with a contrast agent, called CT angiography (CTA). Optimally, the whole aortic vessel tree geometry from consecutive CTAs is overlaid and compared. This allows not only detection of changes in the aorta, but also of its branches, caused by the primary pathology or newly developed. When performed manually, this reconstruction requires slice by slice contouring, which could easily take a whole day for a single aortic vessel tree, and is therefore not feasible in clinical practice. Automatic or semi-automatic vessel tree segmentation algorithms, however, can complete this task in a fraction of the manual execution time and run in parallel to the clinical routine of the clinicians. In this paper, we systematically review computing techniques for the automatic and semi-automatic segmentation of the aortic vessel tree. The review concludes with an in-depth discussion on how close these state-of-the-art approaches are to an application in clinical practice and how active this research field is, taking into account the number of publications, datasets and challenges." @default.
- W3187580752 created "2021-08-16" @default.
- W3187580752 creator A5002069152 @default.
- W3187580752 creator A5010662766 @default.
- W3187580752 creator A5017161970 @default.
- W3187580752 creator A5025446671 @default.
- W3187580752 creator A5033911788 @default.
- W3187580752 creator A5035986375 @default.
- W3187580752 creator A5042171930 @default.
- W3187580752 creator A5065229483 @default.
- W3187580752 date "2021-08-06" @default.
- W3187580752 modified "2023-09-23" @default.
- W3187580752 title "AI-based Aortic Vessel Tree Segmentation for Cardiovascular Diseases Treatment: Status Quo" @default.
- W3187580752 cites W1199446928 @default.
- W3187580752 cites W1492653277 @default.
- W3187580752 cites W1510977035 @default.
- W3187580752 cites W1513680901 @default.
- W3187580752 cites W1607107570 @default.
- W3187580752 cites W1767951414 @default.
- W3187580752 cites W1901129140 @default.
- W3187580752 cites W1909740415 @default.
- W3187580752 cites W1969202437 @default.
- W3187580752 cites W1984297657 @default.
- W3187580752 cites W1990466879 @default.
- W3187580752 cites W1999107835 @default.
- W3187580752 cites W2001787401 @default.
- W3187580752 cites W2007815558 @default.
- W3187580752 cites W2020650216 @default.
- W3187580752 cites W2026910860 @default.
- W3187580752 cites W2032421849 @default.
- W3187580752 cites W2035440297 @default.
- W3187580752 cites W2040149488 @default.
- W3187580752 cites W2052971463 @default.
- W3187580752 cites W2071740290 @default.
- W3187580752 cites W2074133044 @default.
- W3187580752 cites W2084454477 @default.
- W3187580752 cites W2088495565 @default.
- W3187580752 cites W2096932756 @default.
- W3187580752 cites W2098134542 @default.
- W3187580752 cites W2104095591 @default.
- W3187580752 cites W2109760655 @default.
- W3187580752 cites W2112270198 @default.
- W3187580752 cites W2118819810 @default.
- W3187580752 cites W2120271798 @default.
- W3187580752 cites W2125747426 @default.
- W3187580752 cites W2129340961 @default.
- W3187580752 cites W2129534965 @default.
- W3187580752 cites W2129749013 @default.
- W3187580752 cites W2135910868 @default.
- W3187580752 cites W2137238027 @default.
- W3187580752 cites W2137998498 @default.
- W3187580752 cites W2139161977 @default.
- W3187580752 cites W2141983550 @default.
- W3187580752 cites W2143516773 @default.
- W3187580752 cites W2149804870 @default.
- W3187580752 cites W2153431772 @default.
- W3187580752 cites W2158050435 @default.
- W3187580752 cites W2160225702 @default.
- W3187580752 cites W2161213346 @default.
- W3187580752 cites W2164027116 @default.
- W3187580752 cites W2164774194 @default.
- W3187580752 cites W2169293819 @default.
- W3187580752 cites W2268657871 @default.
- W3187580752 cites W2272611432 @default.
- W3187580752 cites W2283784674 @default.
- W3187580752 cites W2322480645 @default.
- W3187580752 cites W2401847236 @default.
- W3187580752 cites W2464708700 @default.
- W3187580752 cites W2492957203 @default.
- W3187580752 cites W2604974184 @default.
- W3187580752 cites W2614921960 @default.
- W3187580752 cites W2696396770 @default.
- W3187580752 cites W2698889375 @default.
- W3187580752 cites W2735351371 @default.
- W3187580752 cites W2741549951 @default.
- W3187580752 cites W2791117644 @default.
- W3187580752 cites W2795136709 @default.
- W3187580752 cites W2892843969 @default.
- W3187580752 cites W2901300494 @default.
- W3187580752 cites W2912507702 @default.
- W3187580752 cites W2915126261 @default.
- W3187580752 cites W2916314754 @default.
- W3187580752 cites W2945307126 @default.
- W3187580752 cites W2947263797 @default.
- W3187580752 cites W2952632681 @default.
- W3187580752 cites W2975732765 @default.
- W3187580752 cites W2981232104 @default.
- W3187580752 cites W3010725820 @default.
- W3187580752 cites W3019994083 @default.
- W3187580752 cites W3035836069 @default.
- W3187580752 cites W3037906496 @default.
- W3187580752 cites W3041288106 @default.
- W3187580752 cites W3049400721 @default.
- W3187580752 cites W3095643479 @default.
- W3187580752 cites W3099415980 @default.
- W3187580752 cites W3112326948 @default.
- W3187580752 cites W3113231417 @default.
- W3187580752 cites W3129641130 @default.
- W3187580752 cites W367900615 @default.
- W3187580752 doi "https://doi.org/10.48550/arxiv.2108.02998" @default.