Matches in SemOpenAlex for { <https://semopenalex.org/work/W3187759421> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W3187759421 abstract "Abstract Finding the chemical composition and processing history from a microstructure morphology for heterogeneous materials is desired in many applications. While the simulation methods based on physical concepts such as the phase-field method can predict the spatio-temporal evolution of the materials’ microstructure, they are not efficient techniques for predicting processing and chemistry if a specific morphology is desired. In this study, we propose a framework based on a deep learning approach that enables us to predict the chemistry and processing history just by reading the morphological distribution of one element. As a case study, we used a dataset from spinodal decomposition simulation of Fe-Cr-Co alloy created by the phase-field method. The mixed dataset, which includes both images, i.e., the morphology of Fe distribution, and continuous data, i.e., the Fe minimum and maximum concentration in the microstructures, are used as input data, and the spinodal temperature and initial chemical composition are utilized as the output data to train the proposed deep neural network. The proposed convolutional layers were compared with pretrained EfficientNet convolutional layers as transfer learning in microstructure feature extraction. The results show that the trained shallow network is effective for chemistry prediction. However, accurate prediction of processing temperature requires more complex feature extraction from the morphology of the microstructure. We benchmarked the model predictive accuracy for real alloy systems with a Fe-Cr-Co transmission electron microscopy micrograph. The predicted chemistry and heat treatment temperature were in good agreement with the ground truth." @default.
- W3187759421 created "2021-08-16" @default.
- W3187759421 creator A5045023262 @default.
- W3187759421 creator A5045984502 @default.
- W3187759421 creator A5073048664 @default.
- W3187759421 date "2021-10-08" @default.
- W3187759421 modified "2023-09-27" @default.
- W3187759421 title "Deep Learning Approach for Chemistry and Processing History Prediction from Materials Microstructure: Application to Spinodal Decomposition" @default.
- W3187759421 doi "https://doi.org/10.21203/rs.3.rs-953170/v1" @default.
- W3187759421 hasPublicationYear "2021" @default.
- W3187759421 type Work @default.
- W3187759421 sameAs 3187759421 @default.
- W3187759421 citedByCount "1" @default.
- W3187759421 countsByYear W31877594212022 @default.
- W3187759421 crossrefType "posted-content" @default.
- W3187759421 hasAuthorship W3187759421A5045023262 @default.
- W3187759421 hasAuthorship W3187759421A5045984502 @default.
- W3187759421 hasAuthorship W3187759421A5073048664 @default.
- W3187759421 hasBestOaLocation W31877594211 @default.
- W3187759421 hasConcept C108583219 @default.
- W3187759421 hasConcept C11413529 @default.
- W3187759421 hasConcept C154945302 @default.
- W3187759421 hasConcept C178790620 @default.
- W3187759421 hasConcept C185592680 @default.
- W3187759421 hasConcept C191897082 @default.
- W3187759421 hasConcept C192562407 @default.
- W3187759421 hasConcept C29234059 @default.
- W3187759421 hasConcept C41008148 @default.
- W3187759421 hasConcept C44280652 @default.
- W3187759421 hasConcept C81363708 @default.
- W3187759421 hasConcept C85272257 @default.
- W3187759421 hasConcept C87976508 @default.
- W3187759421 hasConceptScore W3187759421C108583219 @default.
- W3187759421 hasConceptScore W3187759421C11413529 @default.
- W3187759421 hasConceptScore W3187759421C154945302 @default.
- W3187759421 hasConceptScore W3187759421C178790620 @default.
- W3187759421 hasConceptScore W3187759421C185592680 @default.
- W3187759421 hasConceptScore W3187759421C191897082 @default.
- W3187759421 hasConceptScore W3187759421C192562407 @default.
- W3187759421 hasConceptScore W3187759421C29234059 @default.
- W3187759421 hasConceptScore W3187759421C41008148 @default.
- W3187759421 hasConceptScore W3187759421C44280652 @default.
- W3187759421 hasConceptScore W3187759421C81363708 @default.
- W3187759421 hasConceptScore W3187759421C85272257 @default.
- W3187759421 hasConceptScore W3187759421C87976508 @default.
- W3187759421 hasLocation W31877594211 @default.
- W3187759421 hasOpenAccess W3187759421 @default.
- W3187759421 hasPrimaryLocation W31877594211 @default.
- W3187759421 hasRelatedWork W2371044680 @default.
- W3187759421 hasRelatedWork W2731899572 @default.
- W3187759421 hasRelatedWork W2999805992 @default.
- W3187759421 hasRelatedWork W3011074480 @default.
- W3187759421 hasRelatedWork W3116150086 @default.
- W3187759421 hasRelatedWork W3133861977 @default.
- W3187759421 hasRelatedWork W4200173597 @default.
- W3187759421 hasRelatedWork W4291897433 @default.
- W3187759421 hasRelatedWork W4312417841 @default.
- W3187759421 hasRelatedWork W4321369474 @default.
- W3187759421 isParatext "false" @default.
- W3187759421 isRetracted "false" @default.
- W3187759421 magId "3187759421" @default.
- W3187759421 workType "article" @default.