Matches in SemOpenAlex for { <https://semopenalex.org/work/W3188049081> ?p ?o ?g. }
- W3188049081 abstract "Brain-Computer Interfaces based on the analysis of ElectroEncephaloGraphy (EEG) are composed of several elements to process and classify brain input signals. A relevant phase of these systems is the decision making module, in which often the outputs from different classifiers are fused into a single one. In this work, the use of weighted-moderate deviation based functions is proposed to improve the Enhanced-Multimodal Fusion BCI Framework (EMF) decision making phase. Moderate Deviation-based aggregation functions (MDs) allow us to choose the best value to aggregate a vector of points involving a moderate deviation function. Using a weighted MD, the relative importance of each dimension in the multi-dimensional aggregated data set can also be taken into account. By applying these functions in the EMF, each one of the different brain signals can be weighted according to their importance. Moreover, using automatic differentiation, it is possible to optimize them for the present problem." @default.
- W3188049081 created "2021-08-16" @default.
- W3188049081 creator A5001022240 @default.
- W3188049081 creator A5001841561 @default.
- W3188049081 creator A5004853679 @default.
- W3188049081 creator A5049375194 @default.
- W3188049081 creator A5050027409 @default.
- W3188049081 creator A5053196020 @default.
- W3188049081 creator A5055115678 @default.
- W3188049081 date "2021-07-11" @default.
- W3188049081 modified "2023-10-02" @default.
- W3188049081 title "Optimizing a Weighted Moderate Deviation for Motor Imagery Brain Computer Interfaces" @default.
- W3188049081 cites W1903817945 @default.
- W3188049081 cites W1905771608 @default.
- W3188049081 cites W1972871774 @default.
- W3188049081 cites W1975503090 @default.
- W3188049081 cites W1985261475 @default.
- W3188049081 cites W1996769904 @default.
- W3188049081 cites W2015092473 @default.
- W3188049081 cites W2038120455 @default.
- W3188049081 cites W2060004431 @default.
- W3188049081 cites W2081020044 @default.
- W3188049081 cites W2099509424 @default.
- W3188049081 cites W2105438329 @default.
- W3188049081 cites W2119163516 @default.
- W3188049081 cites W2152171700 @default.
- W3188049081 cites W2163756472 @default.
- W3188049081 cites W2269949114 @default.
- W3188049081 cites W2276353242 @default.
- W3188049081 cites W2296349740 @default.
- W3188049081 cites W2344271072 @default.
- W3188049081 cites W2474750459 @default.
- W3188049081 cites W2526822286 @default.
- W3188049081 cites W2534599926 @default.
- W3188049081 cites W2546901344 @default.
- W3188049081 cites W2557301950 @default.
- W3188049081 cites W2560437435 @default.
- W3188049081 cites W2737825951 @default.
- W3188049081 cites W2784870515 @default.
- W3188049081 cites W2786768213 @default.
- W3188049081 cites W2795127241 @default.
- W3188049081 cites W2808098316 @default.
- W3188049081 cites W2885083530 @default.
- W3188049081 cites W2899771611 @default.
- W3188049081 cites W2910445838 @default.
- W3188049081 cites W2912073344 @default.
- W3188049081 cites W2912270846 @default.
- W3188049081 cites W2947509668 @default.
- W3188049081 cites W2947988006 @default.
- W3188049081 cites W2984664345 @default.
- W3188049081 cites W3105975110 @default.
- W3188049081 cites W3117358039 @default.
- W3188049081 cites W3120460939 @default.
- W3188049081 cites W3125433188 @default.
- W3188049081 doi "https://doi.org/10.1109/fuzz45933.2021.9494492" @default.
- W3188049081 hasPublicationYear "2021" @default.
- W3188049081 type Work @default.
- W3188049081 sameAs 3188049081 @default.
- W3188049081 citedByCount "0" @default.
- W3188049081 crossrefType "proceedings-article" @default.
- W3188049081 hasAuthorship W3188049081A5001022240 @default.
- W3188049081 hasAuthorship W3188049081A5001841561 @default.
- W3188049081 hasAuthorship W3188049081A5004853679 @default.
- W3188049081 hasAuthorship W3188049081A5049375194 @default.
- W3188049081 hasAuthorship W3188049081A5050027409 @default.
- W3188049081 hasAuthorship W3188049081A5053196020 @default.
- W3188049081 hasAuthorship W3188049081A5055115678 @default.
- W3188049081 hasConcept C105795698 @default.
- W3188049081 hasConcept C111919701 @default.
- W3188049081 hasConcept C118552586 @default.
- W3188049081 hasConcept C14036430 @default.
- W3188049081 hasConcept C153180895 @default.
- W3188049081 hasConcept C154945302 @default.
- W3188049081 hasConcept C15744967 @default.
- W3188049081 hasConcept C169760540 @default.
- W3188049081 hasConcept C173201364 @default.
- W3188049081 hasConcept C177264268 @default.
- W3188049081 hasConcept C199360897 @default.
- W3188049081 hasConcept C202444582 @default.
- W3188049081 hasConcept C22679943 @default.
- W3188049081 hasConcept C3018390542 @default.
- W3188049081 hasConcept C33676613 @default.
- W3188049081 hasConcept C33923547 @default.
- W3188049081 hasConcept C41008148 @default.
- W3188049081 hasConcept C522805319 @default.
- W3188049081 hasConcept C54808283 @default.
- W3188049081 hasConcept C78458016 @default.
- W3188049081 hasConcept C86803240 @default.
- W3188049081 hasConcept C98045186 @default.
- W3188049081 hasConceptScore W3188049081C105795698 @default.
- W3188049081 hasConceptScore W3188049081C111919701 @default.
- W3188049081 hasConceptScore W3188049081C118552586 @default.
- W3188049081 hasConceptScore W3188049081C14036430 @default.
- W3188049081 hasConceptScore W3188049081C153180895 @default.
- W3188049081 hasConceptScore W3188049081C154945302 @default.
- W3188049081 hasConceptScore W3188049081C15744967 @default.
- W3188049081 hasConceptScore W3188049081C169760540 @default.
- W3188049081 hasConceptScore W3188049081C173201364 @default.
- W3188049081 hasConceptScore W3188049081C177264268 @default.
- W3188049081 hasConceptScore W3188049081C199360897 @default.