Matches in SemOpenAlex for { <https://semopenalex.org/work/W3188143861> ?p ?o ?g. }
- W3188143861 endingPage "1" @default.
- W3188143861 startingPage "1" @default.
- W3188143861 abstract "The efforts in compressive sensing (CS) literature can be divided into two groups: finding a measurement matrix that preserves the compressed information at its maximum level, and finding a robust reconstruction algorithm. In the traditional CS setup, the measurement matrices are selected as random matrices, and optimization-based iterative solutions are used to recover the signals. Using random matrices when handling large or multi-dimensional signals is cumbersome especially when it comes to iterative optimizations. Recent deep learning-based solutions increase reconstruction accuracy while speeding up recovery, but jointly learning the whole measurement matrix remains challenging. For this reason, state-of-the-art deep learning CS solutions such as convolutional compressive sensing network (CSNET) use block-wise CS schemes to facilitate learning. In this work, we introduce a separable multi-linear learning of the CS matrix by representing the measurement signal as the summation of the arbitrary number of tensors. As compared to block-wise CS, tensorial learning eases blocking artifacts and improves performance, especially at low measurement rates (MRs), such as [Formula: see text]. The software implementation of the proposed network is publicly shared at https://github.com/mehmetyamac/GTSNET." @default.
- W3188143861 created "2021-08-16" @default.
- W3188143861 creator A5005099415 @default.
- W3188143861 creator A5017103100 @default.
- W3188143861 creator A5046067674 @default.
- W3188143861 creator A5047979812 @default.
- W3188143861 creator A5078329374 @default.
- W3188143861 date "2023-01-01" @default.
- W3188143861 modified "2023-10-18" @default.
- W3188143861 title "Generalized Tensor Summation Compressive Sensing Network (GTSNET): An Easy to Learn Compressive Sensing Operation" @default.
- W3188143861 cites W1791560514 @default.
- W3188143861 cites W1930824406 @default.
- W3188143861 cites W1963882359 @default.
- W3188143861 cites W2001380973 @default.
- W3188143861 cites W2015418199 @default.
- W3188143861 cites W2020390700 @default.
- W3188143861 cites W2046904217 @default.
- W3188143861 cites W2056370875 @default.
- W3188143861 cites W2057206714 @default.
- W3188143861 cites W2070945566 @default.
- W3188143861 cites W2078204800 @default.
- W3188143861 cites W2099641086 @default.
- W3188143861 cites W2101675075 @default.
- W3188143861 cites W2102129292 @default.
- W3188143861 cites W2109357213 @default.
- W3188143861 cites W2109449402 @default.
- W3188143861 cites W2120991191 @default.
- W3188143861 cites W2127271355 @default.
- W3188143861 cites W2129131372 @default.
- W3188143861 cites W2130120519 @default.
- W3188143861 cites W2154332973 @default.
- W3188143861 cites W2156387975 @default.
- W3188143861 cites W2159563318 @default.
- W3188143861 cites W2167604521 @default.
- W3188143861 cites W2169382889 @default.
- W3188143861 cites W2273561594 @default.
- W3188143861 cites W2294690908 @default.
- W3188143861 cites W2296616510 @default.
- W3188143861 cites W2517723848 @default.
- W3188143861 cites W2556237558 @default.
- W3188143861 cites W2562637781 @default.
- W3188143861 cites W2574577332 @default.
- W3188143861 cites W2708797285 @default.
- W3188143861 cites W2798559986 @default.
- W3188143861 cites W2898711294 @default.
- W3188143861 cites W2907782682 @default.
- W3188143861 cites W2963081547 @default.
- W3188143861 cites W2963341393 @default.
- W3188143861 cites W2963676935 @default.
- W3188143861 cites W2964101377 @default.
- W3188143861 cites W2980149757 @default.
- W3188143861 cites W3007661815 @default.
- W3188143861 cites W3087291587 @default.
- W3188143861 cites W3088014942 @default.
- W3188143861 cites W3098593035 @default.
- W3188143861 cites W3102722370 @default.
- W3188143861 cites W3162352905 @default.
- W3188143861 doi "https://doi.org/10.1109/tip.2023.3318946" @default.
- W3188143861 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37773907" @default.
- W3188143861 hasPublicationYear "2023" @default.
- W3188143861 type Work @default.
- W3188143861 sameAs 3188143861 @default.
- W3188143861 citedByCount "0" @default.
- W3188143861 crossrefType "journal-article" @default.
- W3188143861 hasAuthorship W3188143861A5005099415 @default.
- W3188143861 hasAuthorship W3188143861A5017103100 @default.
- W3188143861 hasAuthorship W3188143861A5046067674 @default.
- W3188143861 hasAuthorship W3188143861A5047979812 @default.
- W3188143861 hasAuthorship W3188143861A5078329374 @default.
- W3188143861 hasBestOaLocation W31881438611 @default.
- W3188143861 hasConcept C104267543 @default.
- W3188143861 hasConcept C106487976 @default.
- W3188143861 hasConcept C108583219 @default.
- W3188143861 hasConcept C11413529 @default.
- W3188143861 hasConcept C121332964 @default.
- W3188143861 hasConcept C124851039 @default.
- W3188143861 hasConcept C154945302 @default.
- W3188143861 hasConcept C155281189 @default.
- W3188143861 hasConcept C159694833 @default.
- W3188143861 hasConcept C159985019 @default.
- W3188143861 hasConcept C163716315 @default.
- W3188143861 hasConcept C192562407 @default.
- W3188143861 hasConcept C202444582 @default.
- W3188143861 hasConcept C2524010 @default.
- W3188143861 hasConcept C2777210771 @default.
- W3188143861 hasConcept C33923547 @default.
- W3188143861 hasConcept C41008148 @default.
- W3188143861 hasConcept C56372850 @default.
- W3188143861 hasConcept C62520636 @default.
- W3188143861 hasConcept C81363708 @default.
- W3188143861 hasConcept C84462506 @default.
- W3188143861 hasConcept C9390403 @default.
- W3188143861 hasConceptScore W3188143861C104267543 @default.
- W3188143861 hasConceptScore W3188143861C106487976 @default.
- W3188143861 hasConceptScore W3188143861C108583219 @default.
- W3188143861 hasConceptScore W3188143861C11413529 @default.
- W3188143861 hasConceptScore W3188143861C121332964 @default.
- W3188143861 hasConceptScore W3188143861C124851039 @default.