Matches in SemOpenAlex for { <https://semopenalex.org/work/W3188201332> ?p ?o ?g. }
- W3188201332 abstract "Plant functional traits ('traits') are essential for assessing biodiversity and ecosystem processes, but cumbersome to measure. To facilitate trait measurements, we test if traits can be predicted through visible morphological features by coupling heterogeneous photographs from citizen science (iNaturalist) with trait observations (TRY database) through Convolutional Neural Networks (CNN). Our results show that image features suffice to predict several traits representing the main axes of plant functioning. The accuracy is enhanced when using CNN ensembles and incorporating prior knowledge on trait plasticity and climate. Our results suggest that these models generalise across growth forms, taxa and biomes around the globe. We highlight the applicability of this approach by producing global trait maps that reflect known macroecological patterns. These findings demonstrate the potential of Big Data derived from professional and citizen science in concert with CNN as powerful tools for an efficient and automated assessment of Earth's plant functional diversity." @default.
- W3188201332 created "2021-08-16" @default.
- W3188201332 creator A5007461436 @default.
- W3188201332 creator A5042728540 @default.
- W3188201332 creator A5045513194 @default.
- W3188201332 creator A5048901739 @default.
- W3188201332 creator A5053415350 @default.
- W3188201332 date "2021-08-12" @default.
- W3188201332 modified "2023-10-05" @default.
- W3188201332 title "Deep learning and citizen science enable automated plant trait predictions from photographs" @default.
- W3188201332 cites W1905316980 @default.
- W3188201332 cites W1917206836 @default.
- W3188201332 cites W1920170702 @default.
- W3188201332 cites W2004308864 @default.
- W3188201332 cites W2051797088 @default.
- W3188201332 cites W2070315926 @default.
- W3188201332 cites W2084128149 @default.
- W3188201332 cites W2100770032 @default.
- W3188201332 cites W2108598243 @default.
- W3188201332 cites W2119567434 @default.
- W3188201332 cites W2123763752 @default.
- W3188201332 cites W2135777646 @default.
- W3188201332 cites W2148452534 @default.
- W3188201332 cites W2148685117 @default.
- W3188201332 cites W2163403808 @default.
- W3188201332 cites W2168173042 @default.
- W3188201332 cites W2169286869 @default.
- W3188201332 cites W2169969573 @default.
- W3188201332 cites W2218052335 @default.
- W3188201332 cites W2317425714 @default.
- W3188201332 cites W2319660700 @default.
- W3188201332 cites W2531409750 @default.
- W3188201332 cites W2564157693 @default.
- W3188201332 cites W2614464134 @default.
- W3188201332 cites W2746791238 @default.
- W3188201332 cites W2750842042 @default.
- W3188201332 cites W2766884206 @default.
- W3188201332 cites W2793150256 @default.
- W3188201332 cites W2794494935 @default.
- W3188201332 cites W2885150722 @default.
- W3188201332 cites W2892456951 @default.
- W3188201332 cites W2894470772 @default.
- W3188201332 cites W2898973103 @default.
- W3188201332 cites W2908989331 @default.
- W3188201332 cites W2913323966 @default.
- W3188201332 cites W2944277284 @default.
- W3188201332 cites W2951820562 @default.
- W3188201332 cites W2963163009 @default.
- W3188201332 cites W2963817317 @default.
- W3188201332 cites W2964350391 @default.
- W3188201332 cites W2982171921 @default.
- W3188201332 cites W2983606184 @default.
- W3188201332 cites W2990265654 @default.
- W3188201332 cites W2997724759 @default.
- W3188201332 cites W3011573658 @default.
- W3188201332 cites W3021833376 @default.
- W3188201332 cites W3163868555 @default.
- W3188201332 doi "https://doi.org/10.1038/s41598-021-95616-0" @default.
- W3188201332 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8361087" @default.
- W3188201332 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34385494" @default.
- W3188201332 hasPublicationYear "2021" @default.
- W3188201332 type Work @default.
- W3188201332 sameAs 3188201332 @default.
- W3188201332 citedByCount "16" @default.
- W3188201332 countsByYear W31882013322022 @default.
- W3188201332 countsByYear W31882013322023 @default.
- W3188201332 crossrefType "journal-article" @default.
- W3188201332 hasAuthorship W3188201332A5007461436 @default.
- W3188201332 hasAuthorship W3188201332A5042728540 @default.
- W3188201332 hasAuthorship W3188201332A5045513194 @default.
- W3188201332 hasAuthorship W3188201332A5048901739 @default.
- W3188201332 hasAuthorship W3188201332A5053415350 @default.
- W3188201332 hasBestOaLocation W31882013321 @default.
- W3188201332 hasConcept C106934330 @default.
- W3188201332 hasConcept C110872660 @default.
- W3188201332 hasConcept C119857082 @default.
- W3188201332 hasConcept C130217890 @default.
- W3188201332 hasConcept C154945302 @default.
- W3188201332 hasConcept C18903297 @default.
- W3188201332 hasConcept C197352329 @default.
- W3188201332 hasConcept C199360897 @default.
- W3188201332 hasConcept C2522767166 @default.
- W3188201332 hasConcept C41008148 @default.
- W3188201332 hasConcept C59822182 @default.
- W3188201332 hasConcept C81363708 @default.
- W3188201332 hasConcept C86803240 @default.
- W3188201332 hasConcept C89920630 @default.
- W3188201332 hasConceptScore W3188201332C106934330 @default.
- W3188201332 hasConceptScore W3188201332C110872660 @default.
- W3188201332 hasConceptScore W3188201332C119857082 @default.
- W3188201332 hasConceptScore W3188201332C130217890 @default.
- W3188201332 hasConceptScore W3188201332C154945302 @default.
- W3188201332 hasConceptScore W3188201332C18903297 @default.
- W3188201332 hasConceptScore W3188201332C197352329 @default.
- W3188201332 hasConceptScore W3188201332C199360897 @default.
- W3188201332 hasConceptScore W3188201332C2522767166 @default.
- W3188201332 hasConceptScore W3188201332C41008148 @default.
- W3188201332 hasConceptScore W3188201332C59822182 @default.
- W3188201332 hasConceptScore W3188201332C81363708 @default.
- W3188201332 hasConceptScore W3188201332C86803240 @default.