Matches in SemOpenAlex for { <https://semopenalex.org/work/W3188203208> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W3188203208 endingPage "196" @default.
- W3188203208 startingPage "196" @default.
- W3188203208 abstract "The stages of clinical trials need to be carried out when determining a new drug group for patient management. This stage is considered quite long and requires a lot of money. Medical record system data continues to grow all the time. The data can be analyzed to find a pattern of grouping drugs used in the treatment of patients based on their body condition. Utilization of artificial intelligence (AI) technology can be done to classify drug data used during patient care. Machine learning as a branch of science in the AI field can be a solution to deal with these problems. Machines will learn, analyze, and predict drug requirements quickly with less cost. Based on related research, we contribute to comparing the performance of the best machine learning algorithms that can be used as drug classification models. The results of this study are the accuracy of the support vector machine algorithm is 94.7% while the random forest and decission tree algorithms are 98.2%. This shows that the algorithms that can be considered as a drug classification model are random forest and decision tree. This model needs to be tested on a larger dataset to produce the best accuracy value." @default.
- W3188203208 created "2021-08-16" @default.
- W3188203208 creator A5011145744 @default.
- W3188203208 creator A5017061837 @default.
- W3188203208 creator A5079477841 @default.
- W3188203208 date "2021-07-30" @default.
- W3188203208 modified "2023-10-18" @default.
- W3188203208 title "Comparison of Machine Learning Algorithms for Classification of Drug Groups" @default.
- W3188203208 doi "https://doi.org/10.30700/jst.v11i2.1134" @default.
- W3188203208 hasPublicationYear "2021" @default.
- W3188203208 type Work @default.
- W3188203208 sameAs 3188203208 @default.
- W3188203208 citedByCount "1" @default.
- W3188203208 countsByYear W31882032082023 @default.
- W3188203208 crossrefType "journal-article" @default.
- W3188203208 hasAuthorship W3188203208A5011145744 @default.
- W3188203208 hasAuthorship W3188203208A5017061837 @default.
- W3188203208 hasAuthorship W3188203208A5079477841 @default.
- W3188203208 hasBestOaLocation W31882032081 @default.
- W3188203208 hasConcept C110083411 @default.
- W3188203208 hasConcept C113174947 @default.
- W3188203208 hasConcept C11413529 @default.
- W3188203208 hasConcept C119857082 @default.
- W3188203208 hasConcept C12267149 @default.
- W3188203208 hasConcept C124101348 @default.
- W3188203208 hasConcept C134306372 @default.
- W3188203208 hasConcept C154945302 @default.
- W3188203208 hasConcept C169258074 @default.
- W3188203208 hasConcept C202444582 @default.
- W3188203208 hasConcept C33923547 @default.
- W3188203208 hasConcept C41008148 @default.
- W3188203208 hasConcept C84525736 @default.
- W3188203208 hasConcept C9652623 @default.
- W3188203208 hasConceptScore W3188203208C110083411 @default.
- W3188203208 hasConceptScore W3188203208C113174947 @default.
- W3188203208 hasConceptScore W3188203208C11413529 @default.
- W3188203208 hasConceptScore W3188203208C119857082 @default.
- W3188203208 hasConceptScore W3188203208C12267149 @default.
- W3188203208 hasConceptScore W3188203208C124101348 @default.
- W3188203208 hasConceptScore W3188203208C134306372 @default.
- W3188203208 hasConceptScore W3188203208C154945302 @default.
- W3188203208 hasConceptScore W3188203208C169258074 @default.
- W3188203208 hasConceptScore W3188203208C202444582 @default.
- W3188203208 hasConceptScore W3188203208C33923547 @default.
- W3188203208 hasConceptScore W3188203208C41008148 @default.
- W3188203208 hasConceptScore W3188203208C84525736 @default.
- W3188203208 hasConceptScore W3188203208C9652623 @default.
- W3188203208 hasIssue "2" @default.
- W3188203208 hasLocation W31882032081 @default.
- W3188203208 hasOpenAccess W3188203208 @default.
- W3188203208 hasPrimaryLocation W31882032081 @default.
- W3188203208 hasRelatedWork W2936214295 @default.
- W3188203208 hasRelatedWork W3034132578 @default.
- W3188203208 hasRelatedWork W3127425528 @default.
- W3188203208 hasRelatedWork W3210877509 @default.
- W3188203208 hasRelatedWork W4205958290 @default.
- W3188203208 hasRelatedWork W4226398573 @default.
- W3188203208 hasRelatedWork W4283016678 @default.
- W3188203208 hasRelatedWork W4283836538 @default.
- W3188203208 hasRelatedWork W4320483443 @default.
- W3188203208 hasRelatedWork W4366374031 @default.
- W3188203208 hasVolume "11" @default.
- W3188203208 isParatext "false" @default.
- W3188203208 isRetracted "false" @default.
- W3188203208 magId "3188203208" @default.
- W3188203208 workType "article" @default.