Matches in SemOpenAlex for { <https://semopenalex.org/work/W3188296961> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3188296961 endingPage "206" @default.
- W3188296961 startingPage "151" @default.
- W3188296961 abstract "Abstract For a connected real Lie group G we consider the canonical standard-ordered star product arising from the canonical global symbol calculus based on the half-commutator connection of G . This star product trivially converges on polynomial functions on $$T^*G$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:msup> <mml:mi>T</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> thanks to its homogeneity. We define a nuclear Fréchet algebra of certain analytic functions on $$T^*G$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:msup> <mml:mi>T</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> , for which the standard-ordered star product is shown to be a well-defined continuous multiplication, depending holomorphically on the deformation parameter $$hbar $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>ħ</mml:mi> </mml:math> . This nuclear Fréchet algebra is realized as the completed (projective) tensor product of a nuclear Fréchet algebra of entire functions on G with an appropriate nuclear Fréchet algebra of functions on $${mathfrak {g}}^*$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msup> <mml:mrow> <mml:mi>g</mml:mi> </mml:mrow> <mml:mo>∗</mml:mo> </mml:msup> </mml:math> . The passage to the Weyl-ordered star product, i.e. the Gutt star product on $$T^*G$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:msup> <mml:mi>T</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> , is shown to preserve this function space, yielding the continuity of the Gutt star product with holomorphic dependence on $$hbar $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>ħ</mml:mi> </mml:math> ." @default.
- W3188296961 created "2021-08-16" @default.
- W3188296961 creator A5007294217 @default.
- W3188296961 creator A5018774735 @default.
- W3188296961 creator A5059483157 @default.
- W3188296961 date "2022-04-07" @default.
- W3188296961 modified "2023-10-14" @default.
- W3188296961 title "Convergent star products on cotangent bundles of Lie groups" @default.
- W3188296961 cites W104068265 @default.
- W3188296961 cites W137923484 @default.
- W3188296961 cites W1539551388 @default.
- W3188296961 cites W1564239959 @default.
- W3188296961 cites W1577431998 @default.
- W3188296961 cites W1593914013 @default.
- W3188296961 cites W1603262363 @default.
- W3188296961 cites W179137694 @default.
- W3188296961 cites W1974547277 @default.
- W3188296961 cites W1983894121 @default.
- W3188296961 cites W1988715099 @default.
- W3188296961 cites W1992790717 @default.
- W3188296961 cites W1993530952 @default.
- W3188296961 cites W2011039432 @default.
- W3188296961 cites W2023741190 @default.
- W3188296961 cites W2035643088 @default.
- W3188296961 cites W2036901402 @default.
- W3188296961 cites W2050791253 @default.
- W3188296961 cites W2053621654 @default.
- W3188296961 cites W2056066137 @default.
- W3188296961 cites W2071417479 @default.
- W3188296961 cites W2073455312 @default.
- W3188296961 cites W2080508236 @default.
- W3188296961 cites W2086990318 @default.
- W3188296961 cites W2097091037 @default.
- W3188296961 cites W2098020860 @default.
- W3188296961 cites W2125623751 @default.
- W3188296961 cites W2322716165 @default.
- W3188296961 cites W2602901358 @default.
- W3188296961 cites W2770156412 @default.
- W3188296961 cites W2789715932 @default.
- W3188296961 cites W2952632847 @default.
- W3188296961 cites W2962825449 @default.
- W3188296961 cites W2963922829 @default.
- W3188296961 cites W2994764439 @default.
- W3188296961 cites W3045511590 @default.
- W3188296961 cites W3099017276 @default.
- W3188296961 cites W3102164898 @default.
- W3188296961 cites W3109141239 @default.
- W3188296961 cites W4206217620 @default.
- W3188296961 cites W4206397070 @default.
- W3188296961 cites W4213359721 @default.
- W3188296961 cites W4245195088 @default.
- W3188296961 cites W4293861235 @default.
- W3188296961 cites W561327070 @default.
- W3188296961 doi "https://doi.org/10.1007/s00208-022-02384-x" @default.
- W3188296961 hasPublicationYear "2022" @default.
- W3188296961 type Work @default.
- W3188296961 sameAs 3188296961 @default.
- W3188296961 citedByCount "1" @default.
- W3188296961 countsByYear W31882969612022 @default.
- W3188296961 crossrefType "journal-article" @default.
- W3188296961 hasAuthorship W3188296961A5007294217 @default.
- W3188296961 hasAuthorship W3188296961A5018774735 @default.
- W3188296961 hasAuthorship W3188296961A5059483157 @default.
- W3188296961 hasBestOaLocation W31882969611 @default.
- W3188296961 hasConcept C11413529 @default.
- W3188296961 hasConcept C33923547 @default.
- W3188296961 hasConceptScore W3188296961C11413529 @default.
- W3188296961 hasConceptScore W3188296961C33923547 @default.
- W3188296961 hasFunder F4320325356 @default.
- W3188296961 hasIssue "1-2" @default.
- W3188296961 hasLocation W31882969611 @default.
- W3188296961 hasLocation W31882969612 @default.
- W3188296961 hasOpenAccess W3188296961 @default.
- W3188296961 hasPrimaryLocation W31882969611 @default.
- W3188296961 hasRelatedWork W1587224694 @default.
- W3188296961 hasRelatedWork W1979597421 @default.
- W3188296961 hasRelatedWork W2007980826 @default.
- W3188296961 hasRelatedWork W2061531152 @default.
- W3188296961 hasRelatedWork W2077600819 @default.
- W3188296961 hasRelatedWork W2142036596 @default.
- W3188296961 hasRelatedWork W2911598644 @default.
- W3188296961 hasRelatedWork W3002753104 @default.
- W3188296961 hasRelatedWork W4225152035 @default.
- W3188296961 hasRelatedWork W4245490552 @default.
- W3188296961 hasVolume "386" @default.
- W3188296961 isParatext "false" @default.
- W3188296961 isRetracted "false" @default.
- W3188296961 magId "3188296961" @default.
- W3188296961 workType "article" @default.