Matches in SemOpenAlex for { <https://semopenalex.org/work/W3188298370> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3188298370 endingPage "1001" @default.
- W3188298370 startingPage "993" @default.
- W3188298370 abstract "Cardiovascular disease is among the common causes of mortality rate in the world. It is tough for healthcare professionals to forecast because it is a complex undertaking that necessitates competence and a greater level of information. The medical system is still characterized by an abundance of information but a scarcity of knowledge. Mostly online, there is a wealth of information about healthcare organizations. However, reliable analytic techniques for uncovering underlying correlations and relationships between variables are lacking. A computerized medical diagnostics system would promote health productivity while lowering costs. Cardiovascular attack detection required a huge amount of information that is very much complicated and enormous to collect and analyzed utilizing traditional existing functions. Our research aim is to detect the most suitable machine learning methodology for finding cardiac disease which is operationally efficient and accurate. We created a heart disease prediction program that utilizes the patient history to forecast whether or not a person would be identified with cardiovascular disease. To identify and categorize patients having cardiovascular disease, we applied various machine learning methods such as logistic regression & K - Nearest Neighbours (KNN). To govern how well the model may be utilized to improve the accuracy of diagnosis of Heart Attack inside any patient, a very useful technique was applied. The suggested model's performance was quite pleasing, as it was possible to forecast evidence to confirm a heart illness in a particular person using KNN & Linear Regression (LR), with high accuracy when compared to Naive Bayes." @default.
- W3188298370 created "2021-08-16" @default.
- W3188298370 creator A5022002233 @default.
- W3188298370 creator A5034681937 @default.
- W3188298370 creator A5091288154 @default.
- W3188298370 date "2021-06-27" @default.
- W3188298370 modified "2023-09-26" @default.
- W3188298370 title "Cardiovascular heart disease prediction using machine learning classifiers with data mining techniques" @default.
- W3188298370 hasPublicationYear "2021" @default.
- W3188298370 type Work @default.
- W3188298370 sameAs 3188298370 @default.
- W3188298370 citedByCount "0" @default.
- W3188298370 crossrefType "journal-article" @default.
- W3188298370 hasAuthorship W3188298370A5022002233 @default.
- W3188298370 hasAuthorship W3188298370A5034681937 @default.
- W3188298370 hasAuthorship W3188298370A5091288154 @default.
- W3188298370 hasConcept C100521375 @default.
- W3188298370 hasConcept C107673813 @default.
- W3188298370 hasConcept C119857082 @default.
- W3188298370 hasConcept C12267149 @default.
- W3188298370 hasConcept C124101348 @default.
- W3188298370 hasConcept C126322002 @default.
- W3188298370 hasConcept C151956035 @default.
- W3188298370 hasConcept C154945302 @default.
- W3188298370 hasConcept C15744967 @default.
- W3188298370 hasConcept C160735492 @default.
- W3188298370 hasConcept C162324750 @default.
- W3188298370 hasConcept C207201462 @default.
- W3188298370 hasConcept C2779134260 @default.
- W3188298370 hasConcept C2780074459 @default.
- W3188298370 hasConcept C41008148 @default.
- W3188298370 hasConcept C50522688 @default.
- W3188298370 hasConcept C52001869 @default.
- W3188298370 hasConcept C71924100 @default.
- W3188298370 hasConcept C77805123 @default.
- W3188298370 hasConcept C94124525 @default.
- W3188298370 hasConceptScore W3188298370C100521375 @default.
- W3188298370 hasConceptScore W3188298370C107673813 @default.
- W3188298370 hasConceptScore W3188298370C119857082 @default.
- W3188298370 hasConceptScore W3188298370C12267149 @default.
- W3188298370 hasConceptScore W3188298370C124101348 @default.
- W3188298370 hasConceptScore W3188298370C126322002 @default.
- W3188298370 hasConceptScore W3188298370C151956035 @default.
- W3188298370 hasConceptScore W3188298370C154945302 @default.
- W3188298370 hasConceptScore W3188298370C15744967 @default.
- W3188298370 hasConceptScore W3188298370C160735492 @default.
- W3188298370 hasConceptScore W3188298370C162324750 @default.
- W3188298370 hasConceptScore W3188298370C207201462 @default.
- W3188298370 hasConceptScore W3188298370C2779134260 @default.
- W3188298370 hasConceptScore W3188298370C2780074459 @default.
- W3188298370 hasConceptScore W3188298370C41008148 @default.
- W3188298370 hasConceptScore W3188298370C50522688 @default.
- W3188298370 hasConceptScore W3188298370C52001869 @default.
- W3188298370 hasConceptScore W3188298370C71924100 @default.
- W3188298370 hasConceptScore W3188298370C77805123 @default.
- W3188298370 hasConceptScore W3188298370C94124525 @default.
- W3188298370 hasIssue "3" @default.
- W3188298370 hasLocation W31882983701 @default.
- W3188298370 hasOpenAccess W3188298370 @default.
- W3188298370 hasPrimaryLocation W31882983701 @default.
- W3188298370 hasRelatedWork W2054029017 @default.
- W3188298370 hasRelatedWork W2216520259 @default.
- W3188298370 hasRelatedWork W2288555432 @default.
- W3188298370 hasRelatedWork W2309690679 @default.
- W3188298370 hasRelatedWork W2486823558 @default.
- W3188298370 hasRelatedWork W2527826506 @default.
- W3188298370 hasRelatedWork W2614000587 @default.
- W3188298370 hasRelatedWork W2942865718 @default.
- W3188298370 hasRelatedWork W2945721002 @default.
- W3188298370 hasRelatedWork W2991728914 @default.
- W3188298370 hasRelatedWork W3017483137 @default.
- W3188298370 hasRelatedWork W3153530397 @default.
- W3188298370 hasRelatedWork W3154500038 @default.
- W3188298370 hasRelatedWork W3158698931 @default.
- W3188298370 hasRelatedWork W3176635454 @default.
- W3188298370 hasRelatedWork W3187775565 @default.
- W3188298370 hasRelatedWork W3199899573 @default.
- W3188298370 hasRelatedWork W3207975156 @default.
- W3188298370 hasRelatedWork W2187845047 @default.
- W3188298370 hasRelatedWork W2949130511 @default.
- W3188298370 hasVolume "12" @default.
- W3188298370 isParatext "false" @default.
- W3188298370 isRetracted "false" @default.
- W3188298370 magId "3188298370" @default.
- W3188298370 workType "article" @default.