Matches in SemOpenAlex for { <https://semopenalex.org/work/W3188416167> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3188416167 abstract "Abstract Crude oil, a base for more than 6000 products that we use on a daily basis, accounts for 33% of global energy consumption. However, the outbreak and transmission of COVID-19 had significant implications for the entire value chain in the oil industry. The price crash and the fluctuations in price is known to have far reaching effect on global economies, with Nigeria hard. It has therefore become imperative to develop a tool for forecasting the price of crude oil in order to minimise the risks associated with volatility in oil prices and also be able to do proper planning. Hence, this article proposed a hybrid forecasting model involving a classical and machine learning techniques – autoregressive neural network, in determining the prices of crude oil. The monthly data used were obtained from the Central Bank of Nigeria website, spanning January 2006 to October 2020. Statistical efficiency was computed for the hybrid, and the models from which the proposed hybrid was built, using the percent relative efficiency. Analyses showed that the efficiency of the hybrid model, at 20 and 100 hidden neurons, was higher than that of the individual models, the latter being the best performing. The study recommends urgent diversification of the economy in order not for the nation to be plunged into a seemingly unending recession." @default.
- W3188416167 created "2021-08-16" @default.
- W3188416167 creator A5005869001 @default.
- W3188416167 creator A5067182126 @default.
- W3188416167 date "2021-08-02" @default.
- W3188416167 modified "2023-09-24" @default.
- W3188416167 title "Efficient Crude Oil Pricing Using a Machine Learning Approach" @default.
- W3188416167 cites W1447268445 @default.
- W3188416167 cites W1484484255 @default.
- W3188416167 cites W1506434339 @default.
- W3188416167 cites W2004610882 @default.
- W3188416167 cites W2022741385 @default.
- W3188416167 cites W2033219025 @default.
- W3188416167 cites W2048515311 @default.
- W3188416167 cites W2049722240 @default.
- W3188416167 cites W2074988857 @default.
- W3188416167 cites W2076581270 @default.
- W3188416167 cites W2108106771 @default.
- W3188416167 cites W2112650069 @default.
- W3188416167 cites W2118985681 @default.
- W3188416167 cites W2154444290 @default.
- W3188416167 cites W2154553965 @default.
- W3188416167 cites W2165101366 @default.
- W3188416167 cites W2409891754 @default.
- W3188416167 cites W2798058877 @default.
- W3188416167 cites W3121346496 @default.
- W3188416167 cites W3121785069 @default.
- W3188416167 cites W3123416938 @default.
- W3188416167 doi "https://doi.org/10.2118/207152-ms" @default.
- W3188416167 hasPublicationYear "2021" @default.
- W3188416167 type Work @default.
- W3188416167 sameAs 3188416167 @default.
- W3188416167 citedByCount "0" @default.
- W3188416167 crossrefType "proceedings-article" @default.
- W3188416167 hasAuthorship W3188416167A5005869001 @default.
- W3188416167 hasAuthorship W3188416167A5067182126 @default.
- W3188416167 hasConcept C127413603 @default.
- W3188416167 hasConcept C139719470 @default.
- W3188416167 hasConcept C144133560 @default.
- W3188416167 hasConcept C149782125 @default.
- W3188416167 hasConcept C154945302 @default.
- W3188416167 hasConcept C159877910 @default.
- W3188416167 hasConcept C162324750 @default.
- W3188416167 hasConcept C162853370 @default.
- W3188416167 hasConcept C180916674 @default.
- W3188416167 hasConcept C195742910 @default.
- W3188416167 hasConcept C2987168347 @default.
- W3188416167 hasConcept C41008148 @default.
- W3188416167 hasConcept C50644808 @default.
- W3188416167 hasConcept C70784835 @default.
- W3188416167 hasConcept C78762247 @default.
- W3188416167 hasConcept C91602232 @default.
- W3188416167 hasConceptScore W3188416167C127413603 @default.
- W3188416167 hasConceptScore W3188416167C139719470 @default.
- W3188416167 hasConceptScore W3188416167C144133560 @default.
- W3188416167 hasConceptScore W3188416167C149782125 @default.
- W3188416167 hasConceptScore W3188416167C154945302 @default.
- W3188416167 hasConceptScore W3188416167C159877910 @default.
- W3188416167 hasConceptScore W3188416167C162324750 @default.
- W3188416167 hasConceptScore W3188416167C162853370 @default.
- W3188416167 hasConceptScore W3188416167C180916674 @default.
- W3188416167 hasConceptScore W3188416167C195742910 @default.
- W3188416167 hasConceptScore W3188416167C2987168347 @default.
- W3188416167 hasConceptScore W3188416167C41008148 @default.
- W3188416167 hasConceptScore W3188416167C50644808 @default.
- W3188416167 hasConceptScore W3188416167C70784835 @default.
- W3188416167 hasConceptScore W3188416167C78762247 @default.
- W3188416167 hasConceptScore W3188416167C91602232 @default.
- W3188416167 hasLocation W31884161671 @default.
- W3188416167 hasOpenAccess W3188416167 @default.
- W3188416167 hasPrimaryLocation W31884161671 @default.
- W3188416167 hasRelatedWork W10303044 @default.
- W3188416167 hasRelatedWork W10368213 @default.
- W3188416167 hasRelatedWork W12236409 @default.
- W3188416167 hasRelatedWork W1592748 @default.
- W3188416167 hasRelatedWork W5192924 @default.
- W3188416167 hasRelatedWork W5287302 @default.
- W3188416167 hasRelatedWork W583700 @default.
- W3188416167 hasRelatedWork W8116280 @default.
- W3188416167 hasRelatedWork W8459775 @default.
- W3188416167 hasRelatedWork W8688885 @default.
- W3188416167 isParatext "false" @default.
- W3188416167 isRetracted "false" @default.
- W3188416167 magId "3188416167" @default.
- W3188416167 workType "article" @default.