Matches in SemOpenAlex for { <https://semopenalex.org/work/W3188437627> ?p ?o ?g. }
- W3188437627 endingPage "734" @default.
- W3188437627 startingPage "725" @default.
- W3188437627 abstract "Vision-and-language (V&L) models take image and text as input and learn to capture the associations between them. These models can potentially deal with the tasks that involve understanding medical images along with their associated text. However, applying V&L models in the medical domain is challenging due to the expensiveness of data annotations and the requirements of domain knowledge. In this paper, we identify that the visual representation in general V&L models is not suitable for processing medical data. To overcome this limitation, we propose BERTHop, a transformer-based model based on PixelHop++ and VisualBERT for better capturing the associations between clinical notes and medical images. Experiments on the OpenI dataset, a commonly used thoracic disease diagnosis benchmark, show that BERTHop achieves an average Area Under the Curve (AUC) of 98.12% which is 1.62% higher than state-of-the-art while it is trained on a 9× smaller dataset." @default.
- W3188437627 created "2021-08-16" @default.
- W3188437627 creator A5004824034 @default.
- W3188437627 creator A5024358339 @default.
- W3188437627 creator A5033419008 @default.
- W3188437627 creator A5048920247 @default.
- W3188437627 creator A5073299653 @default.
- W3188437627 creator A5087096372 @default.
- W3188437627 date "2022-01-01" @default.
- W3188437627 modified "2023-10-13" @default.
- W3188437627 title "BERTHop: An Effective Vision-and-Language Model for Chest X-ray Disease Diagnosis" @default.
- W3188437627 cites W2253429366 @default.
- W3188437627 cites W2277195237 @default.
- W3188437627 cites W2555136094 @default.
- W3188437627 cites W2745461083 @default.
- W3188437627 cites W2887196013 @default.
- W3188437627 cites W2946236639 @default.
- W3188437627 cites W2963446712 @default.
- W3188437627 cites W2970231061 @default.
- W3188437627 cites W2971258845 @default.
- W3188437627 cites W2995225687 @default.
- W3188437627 cites W2997591391 @default.
- W3188437627 cites W3009654469 @default.
- W3188437627 cites W3034727271 @default.
- W3188437627 cites W3090449556 @default.
- W3188437627 cites W3091383840 @default.
- W3188437627 cites W3101156210 @default.
- W3188437627 cites W3128510757 @default.
- W3188437627 cites W3134211944 @default.
- W3188437627 cites W3169060787 @default.
- W3188437627 cites W3169588269 @default.
- W3188437627 cites W3187785361 @default.
- W3188437627 cites W639708223 @default.
- W3188437627 doi "https://doi.org/10.1007/978-3-031-16443-9_69" @default.
- W3188437627 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37093922" @default.
- W3188437627 hasPublicationYear "2022" @default.
- W3188437627 type Work @default.
- W3188437627 sameAs 3188437627 @default.
- W3188437627 citedByCount "3" @default.
- W3188437627 countsByYear W31884376272021 @default.
- W3188437627 countsByYear W31884376272023 @default.
- W3188437627 crossrefType "book-chapter" @default.
- W3188437627 hasAuthorship W3188437627A5004824034 @default.
- W3188437627 hasAuthorship W3188437627A5024358339 @default.
- W3188437627 hasAuthorship W3188437627A5033419008 @default.
- W3188437627 hasAuthorship W3188437627A5048920247 @default.
- W3188437627 hasAuthorship W3188437627A5073299653 @default.
- W3188437627 hasAuthorship W3188437627A5087096372 @default.
- W3188437627 hasBestOaLocation W31884376272 @default.
- W3188437627 hasConcept C119857082 @default.
- W3188437627 hasConcept C121332964 @default.
- W3188437627 hasConcept C13280743 @default.
- W3188437627 hasConcept C134306372 @default.
- W3188437627 hasConcept C154945302 @default.
- W3188437627 hasConcept C165801399 @default.
- W3188437627 hasConcept C17744445 @default.
- W3188437627 hasConcept C185798385 @default.
- W3188437627 hasConcept C199539241 @default.
- W3188437627 hasConcept C205649164 @default.
- W3188437627 hasConcept C2776359362 @default.
- W3188437627 hasConcept C31601959 @default.
- W3188437627 hasConcept C31972630 @default.
- W3188437627 hasConcept C33923547 @default.
- W3188437627 hasConcept C36503486 @default.
- W3188437627 hasConcept C41008148 @default.
- W3188437627 hasConcept C62520636 @default.
- W3188437627 hasConcept C66322947 @default.
- W3188437627 hasConcept C94625758 @default.
- W3188437627 hasConceptScore W3188437627C119857082 @default.
- W3188437627 hasConceptScore W3188437627C121332964 @default.
- W3188437627 hasConceptScore W3188437627C13280743 @default.
- W3188437627 hasConceptScore W3188437627C134306372 @default.
- W3188437627 hasConceptScore W3188437627C154945302 @default.
- W3188437627 hasConceptScore W3188437627C165801399 @default.
- W3188437627 hasConceptScore W3188437627C17744445 @default.
- W3188437627 hasConceptScore W3188437627C185798385 @default.
- W3188437627 hasConceptScore W3188437627C199539241 @default.
- W3188437627 hasConceptScore W3188437627C205649164 @default.
- W3188437627 hasConceptScore W3188437627C2776359362 @default.
- W3188437627 hasConceptScore W3188437627C31601959 @default.
- W3188437627 hasConceptScore W3188437627C31972630 @default.
- W3188437627 hasConceptScore W3188437627C33923547 @default.
- W3188437627 hasConceptScore W3188437627C36503486 @default.
- W3188437627 hasConceptScore W3188437627C41008148 @default.
- W3188437627 hasConceptScore W3188437627C62520636 @default.
- W3188437627 hasConceptScore W3188437627C66322947 @default.
- W3188437627 hasConceptScore W3188437627C94625758 @default.
- W3188437627 hasLocation W31884376271 @default.
- W3188437627 hasLocation W31884376272 @default.
- W3188437627 hasLocation W31884376273 @default.
- W3188437627 hasLocation W31884376274 @default.
- W3188437627 hasOpenAccess W3188437627 @default.
- W3188437627 hasPrimaryLocation W31884376271 @default.
- W3188437627 hasRelatedWork W112744582 @default.
- W3188437627 hasRelatedWork W1485630101 @default.
- W3188437627 hasRelatedWork W1891287906 @default.
- W3188437627 hasRelatedWork W2036807459 @default.
- W3188437627 hasRelatedWork W2498017833 @default.