Matches in SemOpenAlex for { <https://semopenalex.org/work/W3188482078> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3188482078 endingPage "107374" @default.
- W3188482078 startingPage "107374" @default.
- W3188482078 abstract "As a promising tool for intelligent diagnosis of rotating machinery with unlabeled data, transfer learning (TL) has attracted considerable attentions from academia and industry. However, mechanical data in real-case have obviously unlabeled and imbalanced characteristics, which are not simultaneously concerned enough by existing intelligent TL fault diagnosis methods. Specially, the highly imbalanced mechanical data lead to the skewed marginal distribution and classifier, which makes a huge challenge for the TL-based intelligent fault diagnosis method. Self-updating knowledge via tradeoff of believing, doubting and rectifying is a main learning process of human being, from which the previous experience is of great importance to enhance the learning ability. Inspired by the learning strategy of human being, a self-learning transferable neural network (STNN) is proposed for the intelligent machinery fault diagnosis with unlabeled and imbalanced data in this study. Three novel loss terms are constructed into STNN for realizing the self-believing, doubting and rectifying in the prediction of health conditions. First one is the self-believing loss term, which uses the conditional distribution adaptation to align the learned cross-domain features proactively. Second one is the self-doubting loss term that provides the ability of freeing from the false experience for STNN. Third one is the self-rectifying loss term, in which the information entropy is employed to regulate the learning process of STNN. Two experimental cases of rotating machinery show that the effectiveness and superiority of the proposed STNN in enhancing the intelligent fault diagnosis of rotating machinery with unlabeled and imbalanced data." @default.
- W3188482078 created "2021-08-16" @default.
- W3188482078 creator A5002520163 @default.
- W3188482078 creator A5008653906 @default.
- W3188482078 creator A5051324852 @default.
- W3188482078 creator A5078863586 @default.
- W3188482078 creator A5080975776 @default.
- W3188482078 date "2021-10-01" @default.
- W3188482078 modified "2023-10-15" @default.
- W3188482078 title "Self-learning transferable neural network for intelligent fault diagnosis of rotating machinery with unlabeled and imbalanced data" @default.
- W3188482078 cites W2115403315 @default.
- W3188482078 cites W2164943005 @default.
- W3188482078 cites W2168029153 @default.
- W3188482078 cites W2317595875 @default.
- W3188482078 cites W2556013418 @default.
- W3188482078 cites W2763583057 @default.
- W3188482078 cites W2775523681 @default.
- W3188482078 cites W2898375427 @default.
- W3188482078 cites W2907541186 @default.
- W3188482078 cites W2939535241 @default.
- W3188482078 cites W2961876792 @default.
- W3188482078 cites W2963305780 @default.
- W3188482078 cites W2987480074 @default.
- W3188482078 cites W2990705538 @default.
- W3188482078 cites W2998506103 @default.
- W3188482078 cites W2999406639 @default.
- W3188482078 cites W3025981493 @default.
- W3188482078 cites W3029391820 @default.
- W3188482078 cites W3060850527 @default.
- W3188482078 cites W3092068739 @default.
- W3188482078 cites W3093984614 @default.
- W3188482078 cites W3094558639 @default.
- W3188482078 cites W3112571664 @default.
- W3188482078 cites W3115710758 @default.
- W3188482078 cites W3122126208 @default.
- W3188482078 cites W3124898479 @default.
- W3188482078 cites W3126359275 @default.
- W3188482078 cites W3133502632 @default.
- W3188482078 cites W3139271288 @default.
- W3188482078 cites W3144490011 @default.
- W3188482078 doi "https://doi.org/10.1016/j.knosys.2021.107374" @default.
- W3188482078 hasPublicationYear "2021" @default.
- W3188482078 type Work @default.
- W3188482078 sameAs 3188482078 @default.
- W3188482078 citedByCount "30" @default.
- W3188482078 countsByYear W31884820782021 @default.
- W3188482078 countsByYear W31884820782022 @default.
- W3188482078 countsByYear W31884820782023 @default.
- W3188482078 crossrefType "journal-article" @default.
- W3188482078 hasAuthorship W3188482078A5002520163 @default.
- W3188482078 hasAuthorship W3188482078A5008653906 @default.
- W3188482078 hasAuthorship W3188482078A5051324852 @default.
- W3188482078 hasAuthorship W3188482078A5078863586 @default.
- W3188482078 hasAuthorship W3188482078A5080975776 @default.
- W3188482078 hasConcept C111919701 @default.
- W3188482078 hasConcept C119857082 @default.
- W3188482078 hasConcept C127313418 @default.
- W3188482078 hasConcept C154945302 @default.
- W3188482078 hasConcept C165205528 @default.
- W3188482078 hasConcept C175551986 @default.
- W3188482078 hasConcept C2776434776 @default.
- W3188482078 hasConcept C41008148 @default.
- W3188482078 hasConcept C50644808 @default.
- W3188482078 hasConcept C95623464 @default.
- W3188482078 hasConcept C98045186 @default.
- W3188482078 hasConceptScore W3188482078C111919701 @default.
- W3188482078 hasConceptScore W3188482078C119857082 @default.
- W3188482078 hasConceptScore W3188482078C127313418 @default.
- W3188482078 hasConceptScore W3188482078C154945302 @default.
- W3188482078 hasConceptScore W3188482078C165205528 @default.
- W3188482078 hasConceptScore W3188482078C175551986 @default.
- W3188482078 hasConceptScore W3188482078C2776434776 @default.
- W3188482078 hasConceptScore W3188482078C41008148 @default.
- W3188482078 hasConceptScore W3188482078C50644808 @default.
- W3188482078 hasConceptScore W3188482078C95623464 @default.
- W3188482078 hasConceptScore W3188482078C98045186 @default.
- W3188482078 hasFunder F4320321001 @default.
- W3188482078 hasFunder F4320321543 @default.
- W3188482078 hasLocation W31884820781 @default.
- W3188482078 hasOpenAccess W3188482078 @default.
- W3188482078 hasPrimaryLocation W31884820781 @default.
- W3188482078 hasRelatedWork W2087861452 @default.
- W3188482078 hasRelatedWork W2360356917 @default.
- W3188482078 hasRelatedWork W2556319748 @default.
- W3188482078 hasRelatedWork W2961085424 @default.
- W3188482078 hasRelatedWork W3017503936 @default.
- W3188482078 hasRelatedWork W3190874734 @default.
- W3188482078 hasRelatedWork W3200179079 @default.
- W3188482078 hasRelatedWork W4249229055 @default.
- W3188482078 hasRelatedWork W4293850991 @default.
- W3188482078 hasRelatedWork W1629725936 @default.
- W3188482078 hasVolume "230" @default.
- W3188482078 isParatext "false" @default.
- W3188482078 isRetracted "false" @default.
- W3188482078 magId "3188482078" @default.
- W3188482078 workType "article" @default.