Matches in SemOpenAlex for { <https://semopenalex.org/work/W3188490640> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3188490640 endingPage "8" @default.
- W3188490640 startingPage "1" @default.
- W3188490640 abstract "The neural network algorithm of deep learning was applied to optimize and improve color Doppler ultrasound images, which was used for the research on elderly patients with chronic heart failure (CHF) complicated with sarcopenia, so as to analyze the effect of the deep-learning-based color Doppler ultrasound image on the diagnosis of CHF. 259 patients were selected randomly in this study, who were admitted to hospital from October 2017 to March 2020 and were diagnosed with sarcopenia. Then, all of them underwent cardiac ultrasound examination and were divided into two groups according to whether deep learning technology was used for image processing or not. A group of routine unprocessed images was set as the control group, and the images processed by deep learning were set as the experimental group. The results of color Doppler images before and after processing were analyzed and compared; that is, the processed images of the experimental group were clearer and had higher resolution than the unprocessed images of the control group, with the peak signal-to-noise ratio (PSNR) = 20 and structural similarity index measure (SSIM) = 0.09; the similarity between the final diagnosis results and the examination results of the experimental group (93.5%) was higher than that of the control group (87.0%), and the comparison was statistically significant ( <math xmlns=http://www.w3.org/1998/Math/MathML id=M1> <mi>P</mi> <mo><</mo> <mn>0.05</mn> </math> ); among all the patients diagnosed with sarcopenia, 88.9% were also eventually diagnosed with CHF and only a small part of them were diagnosed with other diseases, with statistical significance ( <math xmlns=http://www.w3.org/1998/Math/MathML id=M2> <mi>P</mi> <mo><</mo> <mn>0.05</mn> </math> ). In conclusion, deep learning technology had certain application value in processing color Doppler ultrasound images. Although there was no obvious difference between the color Doppler ultrasound images before and after processing, they could all make a better diagnosis. Moreover, the research results showed the correlation between CHF and sarcopenia." @default.
- W3188490640 created "2021-08-16" @default.
- W3188490640 creator A5007705719 @default.
- W3188490640 creator A5020374421 @default.
- W3188490640 creator A5035445599 @default.
- W3188490640 creator A5036002517 @default.
- W3188490640 creator A5073144713 @default.
- W3188490640 creator A5076283955 @default.
- W3188490640 date "2021-07-29" @default.
- W3188490640 modified "2023-10-15" @default.
- W3188490640 title "Deep-Learning-Based Color Doppler Ultrasound Image Feature in the Diagnosis of Elderly Patients with Chronic Heart Failure Complicated with Sarcopenia" @default.
- W3188490640 cites W2106569666 @default.
- W3188490640 cites W2132273917 @default.
- W3188490640 cites W2512698709 @default.
- W3188490640 cites W2608759607 @default.
- W3188490640 cites W2793843524 @default.
- W3188490640 cites W2897513125 @default.
- W3188490640 cites W2898197178 @default.
- W3188490640 cites W2900702386 @default.
- W3188490640 cites W2902081996 @default.
- W3188490640 cites W2906253531 @default.
- W3188490640 cites W2912883486 @default.
- W3188490640 cites W2918549634 @default.
- W3188490640 cites W2949476999 @default.
- W3188490640 cites W2996485613 @default.
- W3188490640 cites W3000989170 @default.
- W3188490640 cites W3004868960 @default.
- W3188490640 cites W3080892331 @default.
- W3188490640 cites W4205123661 @default.
- W3188490640 doi "https://doi.org/10.1155/2021/2603842" @default.
- W3188490640 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8346313" @default.
- W3188490640 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34367535" @default.
- W3188490640 hasPublicationYear "2021" @default.
- W3188490640 type Work @default.
- W3188490640 sameAs 3188490640 @default.
- W3188490640 citedByCount "1" @default.
- W3188490640 countsByYear W31884906402022 @default.
- W3188490640 crossrefType "journal-article" @default.
- W3188490640 hasAuthorship W3188490640A5007705719 @default.
- W3188490640 hasAuthorship W3188490640A5020374421 @default.
- W3188490640 hasAuthorship W3188490640A5035445599 @default.
- W3188490640 hasAuthorship W3188490640A5036002517 @default.
- W3188490640 hasAuthorship W3188490640A5073144713 @default.
- W3188490640 hasAuthorship W3188490640A5076283955 @default.
- W3188490640 hasBestOaLocation W31884906401 @default.
- W3188490640 hasConcept C103278499 @default.
- W3188490640 hasConcept C108583219 @default.
- W3188490640 hasConcept C115961682 @default.
- W3188490640 hasConcept C126322002 @default.
- W3188490640 hasConcept C126838900 @default.
- W3188490640 hasConcept C143753070 @default.
- W3188490640 hasConcept C154945302 @default.
- W3188490640 hasConcept C2776214593 @default.
- W3188490640 hasConcept C3019130837 @default.
- W3188490640 hasConcept C41008148 @default.
- W3188490640 hasConcept C529618451 @default.
- W3188490640 hasConcept C71924100 @default.
- W3188490640 hasConceptScore W3188490640C103278499 @default.
- W3188490640 hasConceptScore W3188490640C108583219 @default.
- W3188490640 hasConceptScore W3188490640C115961682 @default.
- W3188490640 hasConceptScore W3188490640C126322002 @default.
- W3188490640 hasConceptScore W3188490640C126838900 @default.
- W3188490640 hasConceptScore W3188490640C143753070 @default.
- W3188490640 hasConceptScore W3188490640C154945302 @default.
- W3188490640 hasConceptScore W3188490640C2776214593 @default.
- W3188490640 hasConceptScore W3188490640C3019130837 @default.
- W3188490640 hasConceptScore W3188490640C41008148 @default.
- W3188490640 hasConceptScore W3188490640C529618451 @default.
- W3188490640 hasConceptScore W3188490640C71924100 @default.
- W3188490640 hasLocation W31884906401 @default.
- W3188490640 hasLocation W31884906402 @default.
- W3188490640 hasOpenAccess W3188490640 @default.
- W3188490640 hasPrimaryLocation W31884906401 @default.
- W3188490640 hasRelatedWork W2596733215 @default.
- W3188490640 hasRelatedWork W2731899572 @default.
- W3188490640 hasRelatedWork W2900794075 @default.
- W3188490640 hasRelatedWork W2939353110 @default.
- W3188490640 hasRelatedWork W3009238340 @default.
- W3188490640 hasRelatedWork W3210632593 @default.
- W3188490640 hasRelatedWork W3215138031 @default.
- W3188490640 hasRelatedWork W4210999218 @default.
- W3188490640 hasRelatedWork W4321369474 @default.
- W3188490640 hasRelatedWork W4360585206 @default.
- W3188490640 hasVolume "2021" @default.
- W3188490640 isParatext "false" @default.
- W3188490640 isRetracted "false" @default.
- W3188490640 magId "3188490640" @default.
- W3188490640 workType "article" @default.