Matches in SemOpenAlex for { <https://semopenalex.org/work/W3188545278> ?p ?o ?g. }
- W3188545278 endingPage "1109" @default.
- W3188545278 startingPage "1099" @default.
- W3188545278 abstract "This study aimed to develop a method for detection of femoral neck fracture (FNF) including displaced and non-displaced fractures using convolutional neural network (CNN) with plain X-ray and to validate its use across hospitals through internal and external validation sets. This is a retrospective study using hip and pelvic anteroposterior films for training and detecting femoral neck fracture through residual neural network (ResNet) 18 with convolutional block attention module (CBAM) + + . The study was performed at two tertiary hospitals between February and May 2020 and used data from January 2005 to December 2018. Our primary outcome was favorable performance for diagnosis of femoral neck fracture from negative studies in our dataset. We described the outcomes as area under the receiver operating characteristic curve (AUC), accuracy, Youden index, sensitivity, and specificity. A total of 4,189 images that contained 1,109 positive images (332 non-displaced and 777 displaced) and 3,080 negative images were collected from two hospitals. The test values after training with one hospital dataset were 0.999 AUC, 0.986 accuracy, 0.960 Youden index, and 0.966 sensitivity, and 0.993 specificity. Values of external validation with the other hospital dataset were 0.977, 0.971, 0.920, 0.939, and 0.982, respectively. Values of merged hospital datasets were 0.987, 0.983, 0.960, 0.973, and 0.987, respectively. A CNN algorithm for FNF detection in both displaced and non-displaced fractures using plain X-rays could be used in other hospitals to screen for FNF after training with images from the hospital of interest." @default.
- W3188545278 created "2021-08-16" @default.
- W3188545278 creator A5005755921 @default.
- W3188545278 creator A5021903186 @default.
- W3188545278 creator A5026787582 @default.
- W3188545278 creator A5033373250 @default.
- W3188545278 creator A5039628545 @default.
- W3188545278 creator A5060834655 @default.
- W3188545278 creator A5071494259 @default.
- W3188545278 creator A5073284312 @default.
- W3188545278 creator A5075150288 @default.
- W3188545278 date "2021-08-11" @default.
- W3188545278 modified "2023-10-18" @default.
- W3188545278 title "External Validation of Deep Learning Algorithm for Detecting and Visualizing Femoral Neck Fracture Including Displaced and Non-displaced Fracture on Plain X-ray" @default.
- W3188545278 cites W1968112125 @default.
- W3188545278 cites W1981608931 @default.
- W3188545278 cites W1983433228 @default.
- W3188545278 cites W1984439224 @default.
- W3188545278 cites W1985045257 @default.
- W3188545278 cites W1986268411 @default.
- W3188545278 cites W2001859439 @default.
- W3188545278 cites W2009927721 @default.
- W3188545278 cites W2122880769 @default.
- W3188545278 cites W2142009519 @default.
- W3188545278 cites W2152575748 @default.
- W3188545278 cites W2166980870 @default.
- W3188545278 cites W2167585440 @default.
- W3188545278 cites W2169670692 @default.
- W3188545278 cites W2173055017 @default.
- W3188545278 cites W2194775991 @default.
- W3188545278 cites W2210996318 @default.
- W3188545278 cites W2260107916 @default.
- W3188545278 cites W2294403687 @default.
- W3188545278 cites W2340075021 @default.
- W3188545278 cites W2735119958 @default.
- W3188545278 cites W2782817674 @default.
- W3188545278 cites W2811095288 @default.
- W3188545278 cites W2884585870 @default.
- W3188545278 cites W2899835486 @default.
- W3188545278 cites W2935090763 @default.
- W3188545278 cites W2962858109 @default.
- W3188545278 cites W2963521553 @default.
- W3188545278 cites W3013902712 @default.
- W3188545278 cites W3037792789 @default.
- W3188545278 cites W3093182804 @default.
- W3188545278 cites W4231442211 @default.
- W3188545278 cites W4293281135 @default.
- W3188545278 cites W85653436 @default.
- W3188545278 doi "https://doi.org/10.1007/s10278-021-00499-2" @default.
- W3188545278 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8554912" @default.
- W3188545278 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34379216" @default.
- W3188545278 hasPublicationYear "2021" @default.
- W3188545278 type Work @default.
- W3188545278 sameAs 3188545278 @default.
- W3188545278 citedByCount "13" @default.
- W3188545278 countsByYear W31885452782022 @default.
- W3188545278 countsByYear W31885452782023 @default.
- W3188545278 crossrefType "journal-article" @default.
- W3188545278 hasAuthorship W3188545278A5005755921 @default.
- W3188545278 hasAuthorship W3188545278A5021903186 @default.
- W3188545278 hasAuthorship W3188545278A5026787582 @default.
- W3188545278 hasAuthorship W3188545278A5033373250 @default.
- W3188545278 hasAuthorship W3188545278A5039628545 @default.
- W3188545278 hasAuthorship W3188545278A5060834655 @default.
- W3188545278 hasAuthorship W3188545278A5071494259 @default.
- W3188545278 hasAuthorship W3188545278A5073284312 @default.
- W3188545278 hasAuthorship W3188545278A5075150288 @default.
- W3188545278 hasBestOaLocation W31885452782 @default.
- W3188545278 hasConcept C11413529 @default.
- W3188545278 hasConcept C126322002 @default.
- W3188545278 hasConcept C126838900 @default.
- W3188545278 hasConcept C127313418 @default.
- W3188545278 hasConcept C154945302 @default.
- W3188545278 hasConcept C187320778 @default.
- W3188545278 hasConcept C2775854910 @default.
- W3188545278 hasConcept C2776541429 @default.
- W3188545278 hasConcept C2778885795 @default.
- W3188545278 hasConcept C2989005 @default.
- W3188545278 hasConcept C41008148 @default.
- W3188545278 hasConcept C43346845 @default.
- W3188545278 hasConcept C43369102 @default.
- W3188545278 hasConcept C58471807 @default.
- W3188545278 hasConcept C71924100 @default.
- W3188545278 hasConcept C81363708 @default.
- W3188545278 hasConceptScore W3188545278C11413529 @default.
- W3188545278 hasConceptScore W3188545278C126322002 @default.
- W3188545278 hasConceptScore W3188545278C126838900 @default.
- W3188545278 hasConceptScore W3188545278C127313418 @default.
- W3188545278 hasConceptScore W3188545278C154945302 @default.
- W3188545278 hasConceptScore W3188545278C187320778 @default.
- W3188545278 hasConceptScore W3188545278C2775854910 @default.
- W3188545278 hasConceptScore W3188545278C2776541429 @default.
- W3188545278 hasConceptScore W3188545278C2778885795 @default.
- W3188545278 hasConceptScore W3188545278C2989005 @default.
- W3188545278 hasConceptScore W3188545278C41008148 @default.
- W3188545278 hasConceptScore W3188545278C43346845 @default.
- W3188545278 hasConceptScore W3188545278C43369102 @default.
- W3188545278 hasConceptScore W3188545278C58471807 @default.