Matches in SemOpenAlex for { <https://semopenalex.org/work/W3188546989> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3188546989 abstract "We have introduced a novel multivariate regression model, called General N <inf xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>k</inf> Hidden Multi-Layer Feed Forward Neural Network Model. The model prediction power comes essentially from a combination of Universal Approximation theorem, the Stochastic Gradient Descent convergence, and finally the use of ADAM optimizer which is also (at least) locally convergent. This N <inf xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>k</inf> -architecture is proposed to fit any multivariate regression task, as well as any classification task when a softmax activation gate function is applied to the output layer nodes. The model can easily be augmented to thousands of possible layers without loss of predictive power, and has the potential to overcome our difficulties simultaneously in building a model that has a good fit on the test data, and don’t overfit. Its hyper-parameters, the learning rate, the batch size, the number of training times (epochs), the size of each layer, the number of hidden layers, all can be chosen experimentally with cross-validation methods. We have run some experiments with the Mulan Project Datasets [29] to illustrate the performance of the model against Random Forest with a number of estimators from 5 to 10, and a maximum depth from 10 to 30. Not only has the model surpasses the Random Forest model in all tested configurations, but, we have also found this General N <inf xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>k</inf> Hidden Multi-layer Feed Forward Neural Network to be so effective as it reaches state-of-the-art performance for multivariate regression in terms of Mean Squared Error." @default.
- W3188546989 created "2021-08-16" @default.
- W3188546989 creator A5018910006 @default.
- W3188546989 date "2021-06-29" @default.
- W3188546989 modified "2023-10-03" @default.
- W3188546989 title "State-of-the-art Multivariate Regression with a General N<sub>k</sub> Hidden Multi-Layer Feed Forward Neural Network Model" @default.
- W3188546989 cites W1498268535 @default.
- W3188546989 cites W1772240793 @default.
- W3188546989 cites W1963873302 @default.
- W3188546989 cites W1978784480 @default.
- W3188546989 cites W1984020445 @default.
- W3188546989 cites W1988115241 @default.
- W3188546989 cites W2022876554 @default.
- W3188546989 cites W2055980218 @default.
- W3188546989 cites W2091476693 @default.
- W3188546989 cites W2096867547 @default.
- W3188546989 cites W2104974239 @default.
- W3188546989 cites W2110340087 @default.
- W3188546989 cites W2111991669 @default.
- W3188546989 cites W2118023920 @default.
- W3188546989 cites W2155632266 @default.
- W3188546989 cites W2534068475 @default.
- W3188546989 cites W2734408173 @default.
- W3188546989 cites W3007844454 @default.
- W3188546989 cites W3125354470 @default.
- W3188546989 cites W3125462345 @default.
- W3188546989 doi "https://doi.org/10.1109/icaicst53116.2021.9497838" @default.
- W3188546989 hasPublicationYear "2021" @default.
- W3188546989 type Work @default.
- W3188546989 sameAs 3188546989 @default.
- W3188546989 citedByCount "1" @default.
- W3188546989 countsByYear W31885469892023 @default.
- W3188546989 crossrefType "proceedings-article" @default.
- W3188546989 hasAuthorship W3188546989A5018910006 @default.
- W3188546989 hasConcept C105795698 @default.
- W3188546989 hasConcept C11413529 @default.
- W3188546989 hasConcept C119857082 @default.
- W3188546989 hasConcept C153258448 @default.
- W3188546989 hasConcept C154945302 @default.
- W3188546989 hasConcept C161584116 @default.
- W3188546989 hasConcept C185429906 @default.
- W3188546989 hasConcept C188441871 @default.
- W3188546989 hasConcept C206688291 @default.
- W3188546989 hasConcept C22019652 @default.
- W3188546989 hasConcept C33923547 @default.
- W3188546989 hasConcept C41008148 @default.
- W3188546989 hasConcept C50644808 @default.
- W3188546989 hasConceptScore W3188546989C105795698 @default.
- W3188546989 hasConceptScore W3188546989C11413529 @default.
- W3188546989 hasConceptScore W3188546989C119857082 @default.
- W3188546989 hasConceptScore W3188546989C153258448 @default.
- W3188546989 hasConceptScore W3188546989C154945302 @default.
- W3188546989 hasConceptScore W3188546989C161584116 @default.
- W3188546989 hasConceptScore W3188546989C185429906 @default.
- W3188546989 hasConceptScore W3188546989C188441871 @default.
- W3188546989 hasConceptScore W3188546989C206688291 @default.
- W3188546989 hasConceptScore W3188546989C22019652 @default.
- W3188546989 hasConceptScore W3188546989C33923547 @default.
- W3188546989 hasConceptScore W3188546989C41008148 @default.
- W3188546989 hasConceptScore W3188546989C50644808 @default.
- W3188546989 hasLocation W31885469891 @default.
- W3188546989 hasOpenAccess W3188546989 @default.
- W3188546989 hasPrimaryLocation W31885469891 @default.
- W3188546989 hasRelatedWork W2766123424 @default.
- W3188546989 hasRelatedWork W2989932438 @default.
- W3188546989 hasRelatedWork W2999151149 @default.
- W3188546989 hasRelatedWork W3011996705 @default.
- W3188546989 hasRelatedWork W3081044359 @default.
- W3188546989 hasRelatedWork W3099765033 @default.
- W3188546989 hasRelatedWork W3175189414 @default.
- W3188546989 hasRelatedWork W3188546989 @default.
- W3188546989 hasRelatedWork W4210794429 @default.
- W3188546989 hasRelatedWork W4214738898 @default.
- W3188546989 isParatext "false" @default.
- W3188546989 isRetracted "false" @default.
- W3188546989 magId "3188546989" @default.
- W3188546989 workType "article" @default.