Matches in SemOpenAlex for { <https://semopenalex.org/work/W3188579603> ?p ?o ?g. }
- W3188579603 abstract "Graph neural networks (GNNs), as a branch of deep learning in non-Euclidean space, perform particularly well in various tasks that process graph structure data. With the rapid accumulation of biological network data, GNNs have also become an important tool in bioinformatics. In this research, a systematic survey of GNNs and their advances in bioinformatics is presented from multiple perspectives. We first introduce some commonly used GNN models and their basic principles. Then, three representative tasks are proposed based on the three levels of structural information that can be learned by GNNs: node classification, link prediction, and graph generation. Meanwhile, according to the specific applications for various omics data, we categorize and discuss the related studies in three aspects: disease prediction, drug discovery, and biomedical imaging. Based on the analysis, we provide an outlook on the shortcomings of current studies and point out their developing prospect. Although GNNs have achieved excellent results in many biological tasks at present, they still face challenges in terms of low-quality data processing, methodology, and interpretability and have a long road ahead. We believe that GNNs are potentially an excellent method that solves various biological problems in bioinformatics research." @default.
- W3188579603 created "2021-08-16" @default.
- W3188579603 creator A5006799945 @default.
- W3188579603 creator A5008609018 @default.
- W3188579603 creator A5040647242 @default.
- W3188579603 creator A5076495171 @default.
- W3188579603 date "2021-07-29" @default.
- W3188579603 modified "2023-10-11" @default.
- W3188579603 title "Graph Neural Networks and Their Current Applications in Bioinformatics" @default.
- W3188579603 cites W1501856433 @default.
- W3188579603 cites W1966182052 @default.
- W3188579603 cites W1975147762 @default.
- W3188579603 cites W1999008082 @default.
- W3188579603 cites W2002185065 @default.
- W3188579603 cites W2018570668 @default.
- W3188579603 cites W2045777307 @default.
- W3188579603 cites W2048697400 @default.
- W3188579603 cites W2054141820 @default.
- W3188579603 cites W2062533676 @default.
- W3188579603 cites W2083045667 @default.
- W3188579603 cites W2102839669 @default.
- W3188579603 cites W2110684048 @default.
- W3188579603 cites W2116341502 @default.
- W3188579603 cites W2125118217 @default.
- W3188579603 cites W2290847742 @default.
- W3188579603 cites W2311607323 @default.
- W3188579603 cites W2409852956 @default.
- W3188579603 cites W2512118283 @default.
- W3188579603 cites W2516934006 @default.
- W3188579603 cites W2558460151 @default.
- W3188579603 cites W2744032142 @default.
- W3188579603 cites W2752208553 @default.
- W3188579603 cites W2779020697 @default.
- W3188579603 cites W2786016794 @default.
- W3188579603 cites W2848983148 @default.
- W3188579603 cites W2860192827 @default.
- W3188579603 cites W2903262661 @default.
- W3188579603 cites W2912672202 @default.
- W3188579603 cites W2913099012 @default.
- W3188579603 cites W2921730678 @default.
- W3188579603 cites W2927384312 @default.
- W3188579603 cites W2939957600 @default.
- W3188579603 cites W2948035163 @default.
- W3188579603 cites W2950777612 @default.
- W3188579603 cites W2956914893 @default.
- W3188579603 cites W2957050889 @default.
- W3188579603 cites W2960338453 @default.
- W3188579603 cites W2962909765 @default.
- W3188579603 cites W2963020213 @default.
- W3188579603 cites W2963026948 @default.
- W3188579603 cites W2963028280 @default.
- W3188579603 cites W2963242637 @default.
- W3188579603 cites W2963794481 @default.
- W3188579603 cites W2964236544 @default.
- W3188579603 cites W2965857891 @default.
- W3188579603 cites W2967109100 @default.
- W3188579603 cites W2970472075 @default.
- W3188579603 cites W2971132843 @default.
- W3188579603 cites W2972935357 @default.
- W3188579603 cites W2974045261 @default.
- W3188579603 cites W2976040872 @default.
- W3188579603 cites W2978484973 @default.
- W3188579603 cites W2979583482 @default.
- W3188579603 cites W2979847772 @default.
- W3188579603 cites W2986434565 @default.
- W3188579603 cites W2986682582 @default.
- W3188579603 cites W2987105127 @default.
- W3188579603 cites W2990172149 @default.
- W3188579603 cites W2990537780 @default.
- W3188579603 cites W2994871450 @default.
- W3188579603 cites W2996782940 @default.
- W3188579603 cites W3000082418 @default.
- W3188579603 cites W3004675504 @default.
- W3188579603 cites W3004713990 @default.
- W3188579603 cites W3005815958 @default.
- W3188579603 cites W3010683590 @default.
- W3188579603 cites W3012280517 @default.
- W3188579603 cites W3013279271 @default.
- W3188579603 cites W3014974602 @default.
- W3188579603 cites W3018260322 @default.
- W3188579603 cites W3019246273 @default.
- W3188579603 cites W3019745511 @default.
- W3188579603 cites W3021338900 @default.
- W3188579603 cites W3025133539 @default.
- W3188579603 cites W3025623662 @default.
- W3188579603 cites W3025720159 @default.
- W3188579603 cites W3026308742 @default.
- W3188579603 cites W3027226623 @default.
- W3188579603 cites W3027590541 @default.
- W3188579603 cites W3032123378 @default.
- W3188579603 cites W3032843171 @default.
- W3188579603 cites W3033143713 @default.
- W3188579603 cites W3034265573 @default.
- W3188579603 cites W3036159223 @default.
- W3188579603 cites W3036770516 @default.
- W3188579603 cites W3037489518 @default.
- W3188579603 cites W3037947040 @default.
- W3188579603 cites W3038260279 @default.
- W3188579603 cites W3042874372 @default.
- W3188579603 cites W3046226692 @default.