Matches in SemOpenAlex for { <https://semopenalex.org/work/W3188779202> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W3188779202 abstract "You have accessJournal of UrologyStone Disease: Epidemiology & Evaluation II (MP54)1 Sep 2021MP54-18 USE OF MACHINE LEARNING IN THE PREDICTION OF EMERGENCY DEPARTMENT MANAGEMENT OF PATIENTS WITH UROLITHIASIS Akhil A. Saji, John L. Phillips, Majid Eshghi, and Nathan C. Wong Akhil A. SajiAkhil A. Saji More articles by this author , John L. PhillipsJohn L. Phillips More articles by this author , Majid EshghiMajid Eshghi More articles by this author , and Nathan C. WongNathan C. Wong More articles by this author View All Author Informationhttps://doi.org/10.1097/JU.0000000000002084.18AboutPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareFacebookLinked InTwitterEmail Abstract INTRODUCTION AND OBJECTIVE: The initial acute management of patients with urolithiasis is often conducted by non-urologists. We explored whether machine learning (ML) algorithms can be used to aid in the identification of patients who are appropriate for conservative management or prioritized for acute urologic intervention. METHODS: We performed a retrospective review of patients who presented to the emergency department and underwent initial observation with a diagnosis of urolithiasis at our tertiary center between January 2014 and October 2016. We trained six unique machine learning models with 27 different variables including patient demographics, clinical presentation, laboratory/imaging, initial management) in a hypothesis-free manner to build models that could predict need for urologic intervention. To create our ML models, the cohort data was randomly split into 80/20 training and test sub-cohorts with a respective intervention prevalence of 35.4% and 43.9%. RESULTS: A total of 137 patients were included in our study cohort, of which 52 (38%) were admitted to hospital and underwent urologic intervention (our predictive outcome of interest) including stent placement and ureteroscopy or percutaneous nephrolithotripsy. The other 85 patients were discharged and underwent outpatient management. The area under the curve for our models was highest with random forest (RF) (0.957) and gradient boost (GB) (0.918), followed by decision tree (0.792) and K-nearest neighbor (0.746), and then stochastic gradient descent (0.657) and naïve bayes (0.623). We also evaluated the predictive capacity of traditional statistic modeling with logistic regression (LR) as a comparator which had an AUC of 0.667 (Figure 1). CONCLUSIONS: Our machine learning algorithms may accurately predict the need for urologic intervention for patients with urolithiasis, particularly random forest and gradient boost classifiers which both outperformed traditional logistic regression. With further refinement and the addition of more data, these algorithms may be used by non-urologists to aid in the decision making process of these patients. Source of Funding: None © 2021 by American Urological Association Education and Research, Inc.FiguresReferencesRelatedDetails Volume 206Issue Supplement 3September 2021Page: e956-e957 Advertisement Copyright & Permissions© 2021 by American Urological Association Education and Research, Inc.MetricsAuthor Information Akhil A. Saji More articles by this author John L. Phillips More articles by this author Majid Eshghi More articles by this author Nathan C. Wong More articles by this author Expand All Advertisement Loading ..." @default.
- W3188779202 created "2021-08-16" @default.
- W3188779202 creator A5049025895 @default.
- W3188779202 creator A5049686252 @default.
- W3188779202 creator A5065344658 @default.
- W3188779202 creator A5079624804 @default.
- W3188779202 date "2021-09-01" @default.
- W3188779202 modified "2023-09-27" @default.
- W3188779202 title "MP54-18 USE OF MACHINE LEARNING IN THE PREDICTION OF EMERGENCY DEPARTMENT MANAGEMENT OF PATIENTS WITH UROLITHIASIS" @default.
- W3188779202 doi "https://doi.org/10.1097/ju.0000000000002084.18" @default.
- W3188779202 hasPublicationYear "2021" @default.
- W3188779202 type Work @default.
- W3188779202 sameAs 3188779202 @default.
- W3188779202 citedByCount "0" @default.
- W3188779202 crossrefType "journal-article" @default.
- W3188779202 hasAuthorship W3188779202A5049025895 @default.
- W3188779202 hasAuthorship W3188779202A5049686252 @default.
- W3188779202 hasAuthorship W3188779202A5065344658 @default.
- W3188779202 hasAuthorship W3188779202A5079624804 @default.
- W3188779202 hasBestOaLocation W31887792021 @default.
- W3188779202 hasConcept C126322002 @default.
- W3188779202 hasConcept C141071460 @default.
- W3188779202 hasConcept C144024400 @default.
- W3188779202 hasConcept C149923435 @default.
- W3188779202 hasConcept C159110408 @default.
- W3188779202 hasConcept C167135981 @default.
- W3188779202 hasConcept C2777601897 @default.
- W3188779202 hasConcept C2780084366 @default.
- W3188779202 hasConcept C2780665704 @default.
- W3188779202 hasConcept C2780724011 @default.
- W3188779202 hasConcept C71924100 @default.
- W3188779202 hasConcept C72563966 @default.
- W3188779202 hasConceptScore W3188779202C126322002 @default.
- W3188779202 hasConceptScore W3188779202C141071460 @default.
- W3188779202 hasConceptScore W3188779202C144024400 @default.
- W3188779202 hasConceptScore W3188779202C149923435 @default.
- W3188779202 hasConceptScore W3188779202C159110408 @default.
- W3188779202 hasConceptScore W3188779202C167135981 @default.
- W3188779202 hasConceptScore W3188779202C2777601897 @default.
- W3188779202 hasConceptScore W3188779202C2780084366 @default.
- W3188779202 hasConceptScore W3188779202C2780665704 @default.
- W3188779202 hasConceptScore W3188779202C2780724011 @default.
- W3188779202 hasConceptScore W3188779202C71924100 @default.
- W3188779202 hasConceptScore W3188779202C72563966 @default.
- W3188779202 hasIssue "Supplement 3" @default.
- W3188779202 hasLocation W31887792021 @default.
- W3188779202 hasOpenAccess W3188779202 @default.
- W3188779202 hasPrimaryLocation W31887792021 @default.
- W3188779202 hasRelatedWork W2026095104 @default.
- W3188779202 hasRelatedWork W2144264475 @default.
- W3188779202 hasRelatedWork W2913780715 @default.
- W3188779202 hasRelatedWork W2980093723 @default.
- W3188779202 hasRelatedWork W3137831361 @default.
- W3188779202 hasRelatedWork W3154944956 @default.
- W3188779202 hasRelatedWork W3214737873 @default.
- W3188779202 hasRelatedWork W4232888950 @default.
- W3188779202 hasRelatedWork W4238308949 @default.
- W3188779202 hasRelatedWork W4214799196 @default.
- W3188779202 hasVolume "206" @default.
- W3188779202 isParatext "false" @default.
- W3188779202 isRetracted "false" @default.
- W3188779202 magId "3188779202" @default.
- W3188779202 workType "article" @default.