Matches in SemOpenAlex for { <https://semopenalex.org/work/W3188984387> ?p ?o ?g. }
- W3188984387 endingPage "503" @default.
- W3188984387 startingPage "491" @default.
- W3188984387 abstract "Objectives : In the case of pharmaceuticals with high possibility of inflow into the large drinking water treatment plant (DWTP) located in the downstream of the Nakdong River, we tried to evaluate the removal efficiency of pharmaceuticals in the both ozone (O3) and the UV/H2O2 treatment as an alternative of post-O3 process. It was intended to be used as data for the advanced WTP project by prediction of the removal efficiency in the O3 and UV/H2O2 processes with varying water quality conditions.Methods : O3 and UV/H2O2 process were performed for 19 kinds of pharmaceuticals in the sand-filtered water of DWTP. In order to evaluate the removal efficiency in deionized water (DI) and sand-filtered water (SFW) matrices, 19 pharmaceuticals were spiked at a concentration of 100 ng/L, respectively. In the O3 process, the specific O3 dose was 0.1∼2.0 gO3/gDOC (0.25∼5.0 mgO3/L). In the UV/H2O2 process, H2O2 (5 and 10 mg/L) was added to the sample before UV was irradiated (0∼1,500 mJ/cm2).Results and Discussion : In the case of simulated post-O3 process, the removal efficiency of high-ozone reactive pharmaceuticals (kO3 6.5×102∼2.6×106 M-1 s-1) was up to 92% at the specific O3 dose of 0.2 gO3/gDOC. However, the removal efficiency of iopromide (IPM) and primidone (PRM) was only 36∼45% in the same O3 dose (0.2 gO3/gDOC) due to the low O3 reactivity (kO3 < 1 M-1 s-1). A specific O3 dose of 2.0 gO3/gDOC (=5 mgO3/L) was required to achieve a removal efficiency of over 90% for IPM and PRM, indicating that these O3-refractory pharmaceuticals are difficult to control by O3 process. In the case of simulated UV/H2O2 (10 mg/L H2O2) process, the removal efficiency of 19 pharmaceuticals at the UV fluence of 500 and 1,000 mJ/cm2 were 63∼99% and 87∼99%, respectively, and caffeine (CFN) had the lowest removal efficiency. For the O3-refractory pharmaceuticals (i.e., IPM and PRM), the removal efficiency was higher in the UV/H2O2 process than that in the O3 process due to the high reactivity with OH radical (kOH = 3.3×109 and 5.2×109 M-1 s-1). Prediction of removal efficiency for pharmaceuticals in the O3 and UV/H2O2 process was performed using chemical kinetics model to evaluate the change in removal efficiency with varying DOM concentration. As a result of prediction model for O3, when the DOM concentration increased from 1.5 to 3.0 mg/L, the removal efficiency of IPM and PRM decreased by 22∼24% and 15∼24%, respectively. In the case of UV/H2O2 process (10 mg/L H2O2 and UV fluence of 500~1,000 mJ/cm2), the removal efficiency of 16 kinds of pharmaceuticals was reduced by 0∼29%, and the degree of reduction in the removal efficiency of CFN was the highest.Conclusions : As a result of evaluation and prediction of the removal efficiency of pharmaceuticals in the O3 and UV/H2O2 treatment processes, it is confirmed that the possibility of applying the UV/H2O2 treatment as an alternative process to the O3 to abatement of pharmaceuticals." @default.
- W3188984387 created "2021-08-16" @default.
- W3188984387 creator A5001280226 @default.
- W3188984387 creator A5032278448 @default.
- W3188984387 creator A5041268299 @default.
- W3188984387 creator A5066375023 @default.
- W3188984387 creator A5068153200 @default.
- W3188984387 creator A5055219668 @default.
- W3188984387 date "2021-07-31" @default.
- W3188984387 modified "2023-10-16" @default.
- W3188984387 title "Evaluation and Prediction of Removal Efficiency of Pharmaceuticals in the Simulated O3 and UV/H2O2 Process for Drinking Water Treatment Process in the Downstream of Nakdong River" @default.
- W3188984387 cites W1968925844 @default.
- W3188984387 cites W1969922892 @default.
- W3188984387 cites W1969934715 @default.
- W3188984387 cites W1979617106 @default.
- W3188984387 cites W1982383079 @default.
- W3188984387 cites W1990148642 @default.
- W3188984387 cites W2000820435 @default.
- W3188984387 cites W2009566592 @default.
- W3188984387 cites W2009576855 @default.
- W3188984387 cites W2011870954 @default.
- W3188984387 cites W2019859863 @default.
- W3188984387 cites W2025913960 @default.
- W3188984387 cites W2038426896 @default.
- W3188984387 cites W2041582334 @default.
- W3188984387 cites W2043207216 @default.
- W3188984387 cites W2043512115 @default.
- W3188984387 cites W2047138490 @default.
- W3188984387 cites W2049113647 @default.
- W3188984387 cites W2055590724 @default.
- W3188984387 cites W2056056226 @default.
- W3188984387 cites W2058941959 @default.
- W3188984387 cites W2059598963 @default.
- W3188984387 cites W2064631601 @default.
- W3188984387 cites W2077471442 @default.
- W3188984387 cites W2080214239 @default.
- W3188984387 cites W2083764259 @default.
- W3188984387 cites W2090967772 @default.
- W3188984387 cites W2248778963 @default.
- W3188984387 cites W2291393279 @default.
- W3188984387 cites W2332928108 @default.
- W3188984387 cites W2340687898 @default.
- W3188984387 cites W2729586992 @default.
- W3188984387 cites W2790194307 @default.
- W3188984387 cites W2794472881 @default.
- W3188984387 cites W2806027298 @default.
- W3188984387 cites W2949046212 @default.
- W3188984387 cites W2968405048 @default.
- W3188984387 cites W3015907176 @default.
- W3188984387 cites W3022989001 @default.
- W3188984387 cites W3041819629 @default.
- W3188984387 doi "https://doi.org/10.4491/ksee.2021.43.7.491" @default.
- W3188984387 hasPublicationYear "2021" @default.
- W3188984387 type Work @default.
- W3188984387 sameAs 3188984387 @default.
- W3188984387 citedByCount "2" @default.
- W3188984387 countsByYear W31889843872022 @default.
- W3188984387 crossrefType "journal-article" @default.
- W3188984387 hasAuthorship W3188984387A5001280226 @default.
- W3188984387 hasAuthorship W3188984387A5032278448 @default.
- W3188984387 hasAuthorship W3188984387A5041268299 @default.
- W3188984387 hasAuthorship W3188984387A5055219668 @default.
- W3188984387 hasAuthorship W3188984387A5066375023 @default.
- W3188984387 hasAuthorship W3188984387A5068153200 @default.
- W3188984387 hasBestOaLocation W31889843871 @default.
- W3188984387 hasConcept C107872376 @default.
- W3188984387 hasConcept C126838900 @default.
- W3188984387 hasConcept C127413603 @default.
- W3188984387 hasConcept C178790620 @default.
- W3188984387 hasConcept C185592680 @default.
- W3188984387 hasConcept C18903297 @default.
- W3188984387 hasConcept C190960625 @default.
- W3188984387 hasConcept C2778217819 @default.
- W3188984387 hasConcept C2778754328 @default.
- W3188984387 hasConcept C2779786684 @default.
- W3188984387 hasConcept C2780797713 @default.
- W3188984387 hasConcept C39432304 @default.
- W3188984387 hasConcept C508106653 @default.
- W3188984387 hasConcept C528095902 @default.
- W3188984387 hasConcept C71924100 @default.
- W3188984387 hasConcept C86803240 @default.
- W3188984387 hasConcept C87717796 @default.
- W3188984387 hasConcept C94061648 @default.
- W3188984387 hasConceptScore W3188984387C107872376 @default.
- W3188984387 hasConceptScore W3188984387C126838900 @default.
- W3188984387 hasConceptScore W3188984387C127413603 @default.
- W3188984387 hasConceptScore W3188984387C178790620 @default.
- W3188984387 hasConceptScore W3188984387C185592680 @default.
- W3188984387 hasConceptScore W3188984387C18903297 @default.
- W3188984387 hasConceptScore W3188984387C190960625 @default.
- W3188984387 hasConceptScore W3188984387C2778217819 @default.
- W3188984387 hasConceptScore W3188984387C2778754328 @default.
- W3188984387 hasConceptScore W3188984387C2779786684 @default.
- W3188984387 hasConceptScore W3188984387C2780797713 @default.
- W3188984387 hasConceptScore W3188984387C39432304 @default.
- W3188984387 hasConceptScore W3188984387C508106653 @default.
- W3188984387 hasConceptScore W3188984387C528095902 @default.
- W3188984387 hasConceptScore W3188984387C71924100 @default.