Matches in SemOpenAlex for { <https://semopenalex.org/work/W3189067227> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3189067227 endingPage "102641" @default.
- W3189067227 startingPage "102641" @default.
- W3189067227 abstract "Industrial insider threat detection has consistently been a popular field of research. To help detect potential insider threats, the emotional states of humans are identified through a wide range of physiological signals including the galvanic skin response, electrocardiogram, and electroencephalogram (EEG). This paper presents an insider risk assessment system as a fitness for duty security evaluation using EEG brainwave signals with explainable deep learning and machine learning algorithms to classify abnormal EEG signals indicating a potential insider threat and evaluating fitness for duty. The system is designed to be cost-effective by using an Emotiv Insight EEG device with five electrodes. In this study, the data from 17 people in different emotional states were collected. The different levels of emotions were mapped and classified into four risk levels, namely low, normal, medium, and high. The data were collected while the subjects were presented with different images from the scientific international affective picture system. The collected EEG signals were preprocessed to eliminate noise from physical movements and blinking. The data were then used to train self-feature learning of two- and one-dimensional convolutional neural networks, Adaptive Boosting, random forest, and K-nearest neighbors models; the proposed method yielded classification accuracies of 96, 75, 97, 94 and 81%, respectively." @default.
- W3189067227 created "2021-08-16" @default.
- W3189067227 creator A5014443986 @default.
- W3189067227 creator A5021736577 @default.
- W3189067227 creator A5044552714 @default.
- W3189067227 creator A5051284926 @default.
- W3189067227 creator A5075234257 @default.
- W3189067227 creator A5075830877 @default.
- W3189067227 creator A5081232386 @default.
- W3189067227 date "2021-12-01" @default.
- W3189067227 modified "2023-09-27" @default.
- W3189067227 title "Explainable artificial intelligence to evaluate industrial internal security using EEG signals in IoT framework" @default.
- W3189067227 cites W1947251450 @default.
- W3189067227 cites W2002055708 @default.
- W3189067227 cites W2009363298 @default.
- W3189067227 cites W2074788634 @default.
- W3189067227 cites W2084413241 @default.
- W3189067227 cites W2295740275 @default.
- W3189067227 cites W2904463929 @default.
- W3189067227 cites W2921003885 @default.
- W3189067227 cites W2925836809 @default.
- W3189067227 cites W2933579063 @default.
- W3189067227 cites W2949571970 @default.
- W3189067227 cites W2954201390 @default.
- W3189067227 cites W2966861734 @default.
- W3189067227 cites W3013348605 @default.
- W3189067227 cites W3015599872 @default.
- W3189067227 cites W3016330493 @default.
- W3189067227 cites W3043193272 @default.
- W3189067227 cites W3081792780 @default.
- W3189067227 cites W3081985909 @default.
- W3189067227 cites W3089148108 @default.
- W3189067227 cites W3090385165 @default.
- W3189067227 cites W3104755469 @default.
- W3189067227 doi "https://doi.org/10.1016/j.adhoc.2021.102641" @default.
- W3189067227 hasPublicationYear "2021" @default.
- W3189067227 type Work @default.
- W3189067227 sameAs 3189067227 @default.
- W3189067227 citedByCount "15" @default.
- W3189067227 countsByYear W31890672272022 @default.
- W3189067227 countsByYear W31890672272023 @default.
- W3189067227 crossrefType "journal-article" @default.
- W3189067227 hasAuthorship W3189067227A5014443986 @default.
- W3189067227 hasAuthorship W3189067227A5021736577 @default.
- W3189067227 hasAuthorship W3189067227A5044552714 @default.
- W3189067227 hasAuthorship W3189067227A5051284926 @default.
- W3189067227 hasAuthorship W3189067227A5075234257 @default.
- W3189067227 hasAuthorship W3189067227A5075830877 @default.
- W3189067227 hasAuthorship W3189067227A5081232386 @default.
- W3189067227 hasConcept C108583219 @default.
- W3189067227 hasConcept C118552586 @default.
- W3189067227 hasConcept C119857082 @default.
- W3189067227 hasConcept C153180895 @default.
- W3189067227 hasConcept C154945302 @default.
- W3189067227 hasConcept C15744967 @default.
- W3189067227 hasConcept C169258074 @default.
- W3189067227 hasConcept C41008148 @default.
- W3189067227 hasConcept C522805319 @default.
- W3189067227 hasConcept C81363708 @default.
- W3189067227 hasConceptScore W3189067227C108583219 @default.
- W3189067227 hasConceptScore W3189067227C118552586 @default.
- W3189067227 hasConceptScore W3189067227C119857082 @default.
- W3189067227 hasConceptScore W3189067227C153180895 @default.
- W3189067227 hasConceptScore W3189067227C154945302 @default.
- W3189067227 hasConceptScore W3189067227C15744967 @default.
- W3189067227 hasConceptScore W3189067227C169258074 @default.
- W3189067227 hasConceptScore W3189067227C41008148 @default.
- W3189067227 hasConceptScore W3189067227C522805319 @default.
- W3189067227 hasConceptScore W3189067227C81363708 @default.
- W3189067227 hasFunder F4320322334 @default.
- W3189067227 hasLocation W31890672271 @default.
- W3189067227 hasOpenAccess W3189067227 @default.
- W3189067227 hasPrimaryLocation W31890672271 @default.
- W3189067227 hasRelatedWork W2731899572 @default.
- W3189067227 hasRelatedWork W2968586400 @default.
- W3189067227 hasRelatedWork W3116150086 @default.
- W3189067227 hasRelatedWork W3133861977 @default.
- W3189067227 hasRelatedWork W3211546796 @default.
- W3189067227 hasRelatedWork W4200173597 @default.
- W3189067227 hasRelatedWork W4223564025 @default.
- W3189067227 hasRelatedWork W4281616679 @default.
- W3189067227 hasRelatedWork W4312417841 @default.
- W3189067227 hasRelatedWork W4321369474 @default.
- W3189067227 hasVolume "123" @default.
- W3189067227 isParatext "false" @default.
- W3189067227 isRetracted "false" @default.
- W3189067227 magId "3189067227" @default.
- W3189067227 workType "article" @default.