Matches in SemOpenAlex for { <https://semopenalex.org/work/W3189084837> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3189084837 abstract "This paper focuses on a comparison of machine learning algorithms for predicting the cumulative daily water consumption. The data are collected from an internet-based platform that provides usable data. A pre-processing has been designed for checking the integrity of data, i.e., detecting missing data and abnormal consumptions. In order to optimize the water uses in distribution networks, monitoring and forecasting consumption are good solutions. Five models, namely the Polynomial Regression (PR), Nonlinear AutoRegressive (NAR), Support Vector Regression (SVR), MultiLayer Perceptron (MLP) and Long Short-Term Memory (LSTM) are designed and compared to find the most accurate solution to forecast daily water consumption. The performance of these models is based on the Root Mean Square Error (RMSE) calculated from desired values. The water consumption for the next five days is predicted with no prior information but only centralized past measurements. Results show a predicting precision with NAR of about 5 and 23 l/day in respectively domestic and industrial installations where up to 1500 and 2700 l/day can be used." @default.
- W3189084837 created "2021-08-16" @default.
- W3189084837 creator A5001855302 @default.
- W3189084837 creator A5047132129 @default.
- W3189084837 date "2021-06-07" @default.
- W3189084837 modified "2023-10-14" @default.
- W3189084837 title "Comparison of machine learning algorithms to predict daily water consumptions" @default.
- W3189084837 cites W1812222446 @default.
- W3189084837 cites W1992167377 @default.
- W3189084837 cites W1998442441 @default.
- W3189084837 cites W2130109162 @default.
- W3189084837 cites W2148300546 @default.
- W3189084837 cites W2497699407 @default.
- W3189084837 cites W2783996876 @default.
- W3189084837 cites W2920689891 @default.
- W3189084837 doi "https://doi.org/10.1109/dts52014.2021.9498103" @default.
- W3189084837 hasPublicationYear "2021" @default.
- W3189084837 type Work @default.
- W3189084837 sameAs 3189084837 @default.
- W3189084837 citedByCount "1" @default.
- W3189084837 countsByYear W31890848372022 @default.
- W3189084837 crossrefType "proceedings-article" @default.
- W3189084837 hasAuthorship W3189084837A5001855302 @default.
- W3189084837 hasAuthorship W3189084837A5047132129 @default.
- W3189084837 hasConcept C105795698 @default.
- W3189084837 hasConcept C11413529 @default.
- W3189084837 hasConcept C119857082 @default.
- W3189084837 hasConcept C12267149 @default.
- W3189084837 hasConcept C124101348 @default.
- W3189084837 hasConcept C127413603 @default.
- W3189084837 hasConcept C139945424 @default.
- W3189084837 hasConcept C154945302 @default.
- W3189084837 hasConcept C159877910 @default.
- W3189084837 hasConcept C179717631 @default.
- W3189084837 hasConcept C2982944804 @default.
- W3189084837 hasConcept C33923547 @default.
- W3189084837 hasConcept C41008148 @default.
- W3189084837 hasConcept C50644808 @default.
- W3189084837 hasConcept C548081761 @default.
- W3189084837 hasConcept C60908668 @default.
- W3189084837 hasConcept C83546350 @default.
- W3189084837 hasConceptScore W3189084837C105795698 @default.
- W3189084837 hasConceptScore W3189084837C11413529 @default.
- W3189084837 hasConceptScore W3189084837C119857082 @default.
- W3189084837 hasConceptScore W3189084837C12267149 @default.
- W3189084837 hasConceptScore W3189084837C124101348 @default.
- W3189084837 hasConceptScore W3189084837C127413603 @default.
- W3189084837 hasConceptScore W3189084837C139945424 @default.
- W3189084837 hasConceptScore W3189084837C154945302 @default.
- W3189084837 hasConceptScore W3189084837C159877910 @default.
- W3189084837 hasConceptScore W3189084837C179717631 @default.
- W3189084837 hasConceptScore W3189084837C2982944804 @default.
- W3189084837 hasConceptScore W3189084837C33923547 @default.
- W3189084837 hasConceptScore W3189084837C41008148 @default.
- W3189084837 hasConceptScore W3189084837C50644808 @default.
- W3189084837 hasConceptScore W3189084837C548081761 @default.
- W3189084837 hasConceptScore W3189084837C60908668 @default.
- W3189084837 hasConceptScore W3189084837C83546350 @default.
- W3189084837 hasLocation W31890848371 @default.
- W3189084837 hasOpenAccess W3189084837 @default.
- W3189084837 hasPrimaryLocation W31890848371 @default.
- W3189084837 hasRelatedWork W1551818188 @default.
- W3189084837 hasRelatedWork W2749461815 @default.
- W3189084837 hasRelatedWork W2890929759 @default.
- W3189084837 hasRelatedWork W2902707689 @default.
- W3189084837 hasRelatedWork W2979979539 @default.
- W3189084837 hasRelatedWork W3189084837 @default.
- W3189084837 hasRelatedWork W4280611221 @default.
- W3189084837 hasRelatedWork W4311237010 @default.
- W3189084837 hasRelatedWork W4322009192 @default.
- W3189084837 hasRelatedWork W4361795583 @default.
- W3189084837 isParatext "false" @default.
- W3189084837 isRetracted "false" @default.
- W3189084837 magId "3189084837" @default.
- W3189084837 workType "article" @default.