Matches in SemOpenAlex for { <https://semopenalex.org/work/W3189089663> ?p ?o ?g. }
- W3189089663 abstract "We have explored the shear viscosity and electrical conductivity calculations for bosonic and fermionic media, without and with presence of an external magnetic field. For numerical visualisation, we have dealt with their simplified massless expressions. In the presence of a magnetic field, five independent velocity gradient tensors can be designed, and so their corresponding proportional coefficients, connected with the viscous stress tensor, provide us five components of the shear viscosity coefficient. In the existing literature, two sets of viscous stress tensors are available. Starting from them, the present work has obtained expressions for two sets of five shear viscosity coefficients, which can be ultimately classified into three basic components – parallel, perpendicular and Hall components as one get similar expression for the electrical conductivity at the finite magnetic field. Our calculations are based on the kinetic theory approach in relaxation time approximation. Repeating the same mathematical steps under finite magnetic field, which is traditionally practiced in the absence of magnetic field, we have obtained two sets of five shear viscosity components, whose final expressions are in good agreements with earlier references, although a difference in methodology or steps can be noticed. In this context, the present work, for the first time, addresses a detailed calculation of relaxation time approximation (RTA)-based kinetic theory calculations of the second set of five shear viscosity components, which was previously done by Denicol et al (Phys. Rev. D 98, 076009 (2018)) in moment method technique. Realising the massless results of viscosity and conductivity for Maxwell–Boltzmann, Fermi–Dirac and Bose–Einstein distribution functions, we have applied them for massless quark gluon plasma and hadronic matter phases, which can provide us a rough order of strength, within which actual results will vary during quark–hadron phase transition. The present work also indicates that the magnetic field might have some role in building perfect fluid nature in RHIC or LHC matter. The lower bound expectation of shear viscosity to entropy density ratio is also discussed. Here, for the first time, we are addressing an analytic expression of temperature- and magnetic field-dependent relaxation time of the massless fluid, for which perpendicular component of shear viscosity to entropy density ratio can reach its lower bound." @default.
- W3189089663 created "2021-08-16" @default.
- W3189089663 creator A5012344615 @default.
- W3189089663 creator A5044401628 @default.
- W3189089663 creator A5052222153 @default.
- W3189089663 creator A5084010311 @default.
- W3189089663 date "2021-07-29" @default.
- W3189089663 modified "2023-09-27" @default.
- W3189089663 title "Shear viscosity and electrical conductivity of the relativistic fluid in the presence of a magnetic field: A massless case" @default.
- W3189089663 cites W1522248585 @default.
- W3189089663 cites W1908926058 @default.
- W3189089663 cites W1930882967 @default.
- W3189089663 cites W1967490597 @default.
- W3189089663 cites W1970405420 @default.
- W3189089663 cites W1975755822 @default.
- W3189089663 cites W1984121239 @default.
- W3189089663 cites W2000970644 @default.
- W3189089663 cites W2008768968 @default.
- W3189089663 cites W2012883796 @default.
- W3189089663 cites W2021938334 @default.
- W3189089663 cites W2026351989 @default.
- W3189089663 cites W2030789417 @default.
- W3189089663 cites W2035658023 @default.
- W3189089663 cites W2042587598 @default.
- W3189089663 cites W2048466726 @default.
- W3189089663 cites W2052414472 @default.
- W3189089663 cites W2055333120 @default.
- W3189089663 cites W2074263326 @default.
- W3189089663 cites W2085368519 @default.
- W3189089663 cites W2097488599 @default.
- W3189089663 cites W2097909025 @default.
- W3189089663 cites W2128628775 @default.
- W3189089663 cites W2131702274 @default.
- W3189089663 cites W2157858580 @default.
- W3189089663 cites W2158380102 @default.
- W3189089663 cites W2167036049 @default.
- W3189089663 cites W2280053537 @default.
- W3189089663 cites W2300638202 @default.
- W3189089663 cites W2406492737 @default.
- W3189089663 cites W2406835215 @default.
- W3189089663 cites W2519538766 @default.
- W3189089663 cites W2537669636 @default.
- W3189089663 cites W2544089748 @default.
- W3189089663 cites W2594134014 @default.
- W3189089663 cites W2727999354 @default.
- W3189089663 cites W2746030665 @default.
- W3189089663 cites W2760150219 @default.
- W3189089663 cites W2767374332 @default.
- W3189089663 cites W2768057757 @default.
- W3189089663 cites W2788796482 @default.
- W3189089663 cites W2797730973 @default.
- W3189089663 cites W2902002673 @default.
- W3189089663 cites W2921845197 @default.
- W3189089663 cites W2971720127 @default.
- W3189089663 cites W2972612726 @default.
- W3189089663 cites W2981324360 @default.
- W3189089663 cites W2990862466 @default.
- W3189089663 cites W3007083588 @default.
- W3189089663 cites W3013962136 @default.
- W3189089663 cites W3101422784 @default.
- W3189089663 cites W3102004444 @default.
- W3189089663 cites W3104278098 @default.
- W3189089663 cites W3105612535 @default.
- W3189089663 doi "https://doi.org/10.1007/s12043-021-02148-3" @default.
- W3189089663 hasPublicationYear "2021" @default.
- W3189089663 type Work @default.
- W3189089663 sameAs 3189089663 @default.
- W3189089663 citedByCount "11" @default.
- W3189089663 countsByYear W31890896632021 @default.
- W3189089663 countsByYear W31890896632022 @default.
- W3189089663 countsByYear W31890896632023 @default.
- W3189089663 crossrefType "journal-article" @default.
- W3189089663 hasAuthorship W3189089663A5012344615 @default.
- W3189089663 hasAuthorship W3189089663A5044401628 @default.
- W3189089663 hasAuthorship W3189089663A5052222153 @default.
- W3189089663 hasAuthorship W3189089663A5084010311 @default.
- W3189089663 hasBestOaLocation W31890896632 @default.
- W3189089663 hasConcept C115260700 @default.
- W3189089663 hasConcept C121332964 @default.
- W3189089663 hasConcept C127172972 @default.
- W3189089663 hasConcept C171338203 @default.
- W3189089663 hasConcept C26873012 @default.
- W3189089663 hasConcept C48941259 @default.
- W3189089663 hasConcept C62520636 @default.
- W3189089663 hasConcept C74650414 @default.
- W3189089663 hasConceptScore W3189089663C115260700 @default.
- W3189089663 hasConceptScore W3189089663C121332964 @default.
- W3189089663 hasConceptScore W3189089663C127172972 @default.
- W3189089663 hasConceptScore W3189089663C171338203 @default.
- W3189089663 hasConceptScore W3189089663C26873012 @default.
- W3189089663 hasConceptScore W3189089663C48941259 @default.
- W3189089663 hasConceptScore W3189089663C62520636 @default.
- W3189089663 hasConceptScore W3189089663C74650414 @default.
- W3189089663 hasIssue "3" @default.
- W3189089663 hasLocation W31890896631 @default.
- W3189089663 hasLocation W31890896632 @default.
- W3189089663 hasOpenAccess W3189089663 @default.
- W3189089663 hasPrimaryLocation W31890896631 @default.
- W3189089663 hasRelatedWork W2008641820 @default.
- W3189089663 hasRelatedWork W2039747314 @default.