Matches in SemOpenAlex for { <https://semopenalex.org/work/W3189160765> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3189160765 abstract "The study evaluated the performance of various machine learning methods in predicting tensile strength of microwave post-cured composite tailored for weight-sensitive applications. Using forty six training data pairs from the Box-Behnken design plan, an Adaptive Network-based Fuzzy Inference System (ANFIS) and Artificial Neural Networks (ANN) were built to predict the optimum tensile strength of polyurethane wood ash composite. Numerical optimization was done using the graft of ANFIS-MOGA method. The process control factors considered were particle size, curing time, power level, volume fraction and curing angle. The predictive accuracy of the evaluated machine learning methods were assessed using Coefficient of Determination (R2), Root Mean Square Error (RMSE), Mean Average Error (MAE) and Standard Error of Prediction (SEP). RSM (RMSE=0.0339, MAE=0.0002, SEP=0.0295, R2=0.994) and ANFIS (RMSE=0.0307, MAE=0.0098, SEP=0.0267,R2=0.995) models gave higher degree of accuracy than ANN model (RMSE=0.0827, MAE=0.0124, SEP=0.0719,R2=0.988). The optimization exercise gave optimal tensile strength of 2.27 MPa at optimum process setting of 177µm particle size, 33 min of curing time, power level at 411 Watt, 42 % volume fraction and 110 curing angle. Complementary trial at the named optimum process setting conveyed workable results. Furthermore, selecting microwave post-cured composite for weight-sensitive applications was justified considering that the desirability factor for polyurethane (42 % wood ash) is fairly higher than other material in the same class, this points to the fact that deployment of the microwave post-cured composite in weigh-sensitive applications could benefit weight reduction." @default.
- W3189160765 created "2021-08-16" @default.
- W3189160765 creator A5078477520 @default.
- W3189160765 date "2021-05-07" @default.
- W3189160765 modified "2023-09-23" @default.
- W3189160765 title "Evaluation of Machine Learning Methods in Predicting Optimum Tensile Strength of Microwave Post-Cured Composite Tailored for Weight-Sensitive Applications" @default.
- W3189160765 hasPublicationYear "2021" @default.
- W3189160765 type Work @default.
- W3189160765 sameAs 3189160765 @default.
- W3189160765 citedByCount "0" @default.
- W3189160765 crossrefType "posted-content" @default.
- W3189160765 hasAuthorship W3189160765A5078477520 @default.
- W3189160765 hasConcept C104779481 @default.
- W3189160765 hasConcept C105795698 @default.
- W3189160765 hasConcept C112950240 @default.
- W3189160765 hasConcept C11413529 @default.
- W3189160765 hasConcept C119857082 @default.
- W3189160765 hasConcept C128990827 @default.
- W3189160765 hasConcept C132976073 @default.
- W3189160765 hasConcept C139945424 @default.
- W3189160765 hasConcept C154945302 @default.
- W3189160765 hasConcept C159985019 @default.
- W3189160765 hasConcept C186108316 @default.
- W3189160765 hasConcept C192562407 @default.
- W3189160765 hasConcept C195975749 @default.
- W3189160765 hasConcept C33923547 @default.
- W3189160765 hasConcept C41008148 @default.
- W3189160765 hasConcept C50644808 @default.
- W3189160765 hasConcept C58166 @default.
- W3189160765 hasConcept C85617194 @default.
- W3189160765 hasConceptScore W3189160765C104779481 @default.
- W3189160765 hasConceptScore W3189160765C105795698 @default.
- W3189160765 hasConceptScore W3189160765C112950240 @default.
- W3189160765 hasConceptScore W3189160765C11413529 @default.
- W3189160765 hasConceptScore W3189160765C119857082 @default.
- W3189160765 hasConceptScore W3189160765C128990827 @default.
- W3189160765 hasConceptScore W3189160765C132976073 @default.
- W3189160765 hasConceptScore W3189160765C139945424 @default.
- W3189160765 hasConceptScore W3189160765C154945302 @default.
- W3189160765 hasConceptScore W3189160765C159985019 @default.
- W3189160765 hasConceptScore W3189160765C186108316 @default.
- W3189160765 hasConceptScore W3189160765C192562407 @default.
- W3189160765 hasConceptScore W3189160765C195975749 @default.
- W3189160765 hasConceptScore W3189160765C33923547 @default.
- W3189160765 hasConceptScore W3189160765C41008148 @default.
- W3189160765 hasConceptScore W3189160765C50644808 @default.
- W3189160765 hasConceptScore W3189160765C58166 @default.
- W3189160765 hasConceptScore W3189160765C85617194 @default.
- W3189160765 hasLocation W31891607651 @default.
- W3189160765 hasOpenAccess W3189160765 @default.
- W3189160765 hasPrimaryLocation W31891607651 @default.
- W3189160765 hasRelatedWork W2068415097 @default.
- W3189160765 hasRelatedWork W2260714795 @default.
- W3189160765 hasRelatedWork W2518877425 @default.
- W3189160765 hasRelatedWork W2756725570 @default.
- W3189160765 hasRelatedWork W2896167801 @default.
- W3189160765 hasRelatedWork W2907987116 @default.
- W3189160765 hasRelatedWork W2923370583 @default.
- W3189160765 hasRelatedWork W2946842338 @default.
- W3189160765 hasRelatedWork W2949916317 @default.
- W3189160765 hasRelatedWork W3016996894 @default.
- W3189160765 hasRelatedWork W3022390254 @default.
- W3189160765 hasRelatedWork W3084770468 @default.
- W3189160765 hasRelatedWork W3098319161 @default.
- W3189160765 hasRelatedWork W3125022415 @default.
- W3189160765 hasRelatedWork W3161586041 @default.
- W3189160765 hasRelatedWork W3188924307 @default.
- W3189160765 hasRelatedWork W3192644538 @default.
- W3189160765 hasRelatedWork W3203596906 @default.
- W3189160765 hasRelatedWork W3210672765 @default.
- W3189160765 hasRelatedWork W782161776 @default.
- W3189160765 isParatext "false" @default.
- W3189160765 isRetracted "false" @default.
- W3189160765 magId "3189160765" @default.
- W3189160765 workType "article" @default.