Matches in SemOpenAlex for { <https://semopenalex.org/work/W3189241502> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3189241502 endingPage "1458" @default.
- W3189241502 startingPage "1458" @default.
- W3189241502 abstract "The task to extract relations tries to identify relationships between two named entities in a sentence. Because a sentence usually contains several named entities, capturing structural information of a sentence is important to support this task. Currently, graph neural networks are widely implemented to support relation extraction, in which dependency trees are employed to generate adjacent matrices for encoding structural information of a sentence. Because parsing a sentence is error-prone, it influences the performance of a graph neural network. On the other hand, a sentence is structuralized by several named entities, which precisely segment a sentence into several parts. Different features can be combined by prior knowledge and experience, which are effective to initialize a symmetric adjacent matrix for a graph neural network. Based on this phenomenon, we proposed a feature combination-based graph convolutional neural network model (FC-GCN). It has the advantages of encoding structural information of a sentence, considering prior knowledge, and avoiding errors caused by parsing. In the experiments, the results show significant improvement, which outperform existing state-of-the-art performances." @default.
- W3189241502 created "2021-08-16" @default.
- W3189241502 creator A5030019212 @default.
- W3189241502 creator A5041083459 @default.
- W3189241502 creator A5043572903 @default.
- W3189241502 creator A5044103045 @default.
- W3189241502 creator A5064140041 @default.
- W3189241502 date "2021-08-09" @default.
- W3189241502 modified "2023-10-06" @default.
- W3189241502 title "A Feature Combination-Based Graph Convolutional Neural Network Model for Relation Extraction" @default.
- W3189241502 cites W2030408698 @default.
- W3189241502 cites W2949212908 @default.
- W3189241502 cites W2979137222 @default.
- W3189241502 cites W2996917304 @default.
- W3189241502 cites W2998984271 @default.
- W3189241502 cites W3156364014 @default.
- W3189241502 doi "https://doi.org/10.3390/sym13081458" @default.
- W3189241502 hasPublicationYear "2021" @default.
- W3189241502 type Work @default.
- W3189241502 sameAs 3189241502 @default.
- W3189241502 citedByCount "6" @default.
- W3189241502 countsByYear W31892415022022 @default.
- W3189241502 countsByYear W31892415022023 @default.
- W3189241502 crossrefType "journal-article" @default.
- W3189241502 hasAuthorship W3189241502A5030019212 @default.
- W3189241502 hasAuthorship W3189241502A5041083459 @default.
- W3189241502 hasAuthorship W3189241502A5043572903 @default.
- W3189241502 hasAuthorship W3189241502A5044103045 @default.
- W3189241502 hasAuthorship W3189241502A5064140041 @default.
- W3189241502 hasBestOaLocation W31892415021 @default.
- W3189241502 hasConcept C132525143 @default.
- W3189241502 hasConcept C138885662 @default.
- W3189241502 hasConcept C153180895 @default.
- W3189241502 hasConcept C154945302 @default.
- W3189241502 hasConcept C186644900 @default.
- W3189241502 hasConcept C204321447 @default.
- W3189241502 hasConcept C2776401178 @default.
- W3189241502 hasConcept C2777530160 @default.
- W3189241502 hasConcept C41008148 @default.
- W3189241502 hasConcept C41895202 @default.
- W3189241502 hasConcept C50644808 @default.
- W3189241502 hasConcept C80444323 @default.
- W3189241502 hasConcept C81363708 @default.
- W3189241502 hasConceptScore W3189241502C132525143 @default.
- W3189241502 hasConceptScore W3189241502C138885662 @default.
- W3189241502 hasConceptScore W3189241502C153180895 @default.
- W3189241502 hasConceptScore W3189241502C154945302 @default.
- W3189241502 hasConceptScore W3189241502C186644900 @default.
- W3189241502 hasConceptScore W3189241502C204321447 @default.
- W3189241502 hasConceptScore W3189241502C2776401178 @default.
- W3189241502 hasConceptScore W3189241502C2777530160 @default.
- W3189241502 hasConceptScore W3189241502C41008148 @default.
- W3189241502 hasConceptScore W3189241502C41895202 @default.
- W3189241502 hasConceptScore W3189241502C50644808 @default.
- W3189241502 hasConceptScore W3189241502C80444323 @default.
- W3189241502 hasConceptScore W3189241502C81363708 @default.
- W3189241502 hasIssue "8" @default.
- W3189241502 hasLocation W31892415021 @default.
- W3189241502 hasOpenAccess W3189241502 @default.
- W3189241502 hasPrimaryLocation W31892415021 @default.
- W3189241502 hasRelatedWork W1590308178 @default.
- W3189241502 hasRelatedWork W1659887931 @default.
- W3189241502 hasRelatedWork W2167662847 @default.
- W3189241502 hasRelatedWork W2250591306 @default.
- W3189241502 hasRelatedWork W2293457016 @default.
- W3189241502 hasRelatedWork W2369308426 @default.
- W3189241502 hasRelatedWork W2502722637 @default.
- W3189241502 hasRelatedWork W2977842567 @default.
- W3189241502 hasRelatedWork W3186232876 @default.
- W3189241502 hasRelatedWork W1551406738 @default.
- W3189241502 hasVolume "13" @default.
- W3189241502 isParatext "false" @default.
- W3189241502 isRetracted "false" @default.
- W3189241502 magId "3189241502" @default.
- W3189241502 workType "article" @default.