Matches in SemOpenAlex for { <https://semopenalex.org/work/W3189401934> ?p ?o ?g. }
- W3189401934 endingPage "117003" @default.
- W3189401934 startingPage "117003" @default.
- W3189401934 abstract "The previous sub-grid, energy-minimization multi-scale (EMMS) drag models were all established at certain fixed operating conditions and material properties. In this study, we developed a generic EMMS drag for simulating dense fluidized beds by using the Artificial Neural Network (ANN) to cover a wide range of operating conditions and material properties. To this end, the algorithm of the EMMS model was optimized to provide a huge dataset efficiently and the performance of ANN was tested by training with different numbers of data and hidden layer structures. The EMMS-ANN model was determined by balancing the training precision and computational time and then applied to the simulation of five fluidized beds under different operating conditions and material properties. It was found that the simulation with the EMMS-ANN drag enables reasonable prediction and shows good applicability to a wide range of dense fluidization." @default.
- W3189401934 created "2021-08-16" @default.
- W3189401934 creator A5013675409 @default.
- W3189401934 creator A5016924749 @default.
- W3189401934 creator A5050212858 @default.
- W3189401934 date "2021-12-01" @default.
- W3189401934 modified "2023-10-16" @default.
- W3189401934 title "Coupling Artificial Neural Network with EMMS drag for simulation of dense fluidized beds" @default.
- W3189401934 cites W1964557287 @default.
- W3189401934 cites W1968645406 @default.
- W3189401934 cites W1976373489 @default.
- W3189401934 cites W1978613632 @default.
- W3189401934 cites W1979850958 @default.
- W3189401934 cites W1981565337 @default.
- W3189401934 cites W1984628949 @default.
- W3189401934 cites W2001183189 @default.
- W3189401934 cites W2002794663 @default.
- W3189401934 cites W2003450771 @default.
- W3189401934 cites W2005376073 @default.
- W3189401934 cites W2026306082 @default.
- W3189401934 cites W2026736410 @default.
- W3189401934 cites W2033924432 @default.
- W3189401934 cites W2040324544 @default.
- W3189401934 cites W2043330823 @default.
- W3189401934 cites W2052137422 @default.
- W3189401934 cites W2073411609 @default.
- W3189401934 cites W2089479778 @default.
- W3189401934 cites W2090379465 @default.
- W3189401934 cites W2120082790 @default.
- W3189401934 cites W2134802418 @default.
- W3189401934 cites W2140134778 @default.
- W3189401934 cites W2141491074 @default.
- W3189401934 cites W2193627350 @default.
- W3189401934 cites W2442613417 @default.
- W3189401934 cites W2589116722 @default.
- W3189401934 cites W2599895848 @default.
- W3189401934 cites W2616478281 @default.
- W3189401934 cites W2792967541 @default.
- W3189401934 cites W2793752826 @default.
- W3189401934 cites W2903431909 @default.
- W3189401934 cites W2914148359 @default.
- W3189401934 cites W2916493398 @default.
- W3189401934 cites W2917741962 @default.
- W3189401934 cites W2969222270 @default.
- W3189401934 cites W2980472264 @default.
- W3189401934 cites W2998640483 @default.
- W3189401934 cites W3009941599 @default.
- W3189401934 cites W3012518767 @default.
- W3189401934 cites W3028212721 @default.
- W3189401934 cites W3038335467 @default.
- W3189401934 cites W3046609048 @default.
- W3189401934 cites W3080176804 @default.
- W3189401934 cites W3080891795 @default.
- W3189401934 cites W3094597477 @default.
- W3189401934 cites W3102140816 @default.
- W3189401934 cites W3129576108 @default.
- W3189401934 doi "https://doi.org/10.1016/j.ces.2021.117003" @default.
- W3189401934 hasPublicationYear "2021" @default.
- W3189401934 type Work @default.
- W3189401934 sameAs 3189401934 @default.
- W3189401934 citedByCount "17" @default.
- W3189401934 countsByYear W31894019342021 @default.
- W3189401934 countsByYear W31894019342022 @default.
- W3189401934 countsByYear W31894019342023 @default.
- W3189401934 crossrefType "journal-article" @default.
- W3189401934 hasAuthorship W3189401934A5013675409 @default.
- W3189401934 hasAuthorship W3189401934A5016924749 @default.
- W3189401934 hasAuthorship W3189401934A5050212858 @default.
- W3189401934 hasConcept C127413603 @default.
- W3189401934 hasConcept C131584629 @default.
- W3189401934 hasConcept C146978453 @default.
- W3189401934 hasConcept C154945302 @default.
- W3189401934 hasConcept C194832619 @default.
- W3189401934 hasConcept C204323151 @default.
- W3189401934 hasConcept C2084832 @default.
- W3189401934 hasConcept C41008148 @default.
- W3189401934 hasConcept C44154836 @default.
- W3189401934 hasConcept C50644808 @default.
- W3189401934 hasConcept C548081761 @default.
- W3189401934 hasConcept C72921944 @default.
- W3189401934 hasConcept C78519656 @default.
- W3189401934 hasConceptScore W3189401934C127413603 @default.
- W3189401934 hasConceptScore W3189401934C131584629 @default.
- W3189401934 hasConceptScore W3189401934C146978453 @default.
- W3189401934 hasConceptScore W3189401934C154945302 @default.
- W3189401934 hasConceptScore W3189401934C194832619 @default.
- W3189401934 hasConceptScore W3189401934C204323151 @default.
- W3189401934 hasConceptScore W3189401934C2084832 @default.
- W3189401934 hasConceptScore W3189401934C41008148 @default.
- W3189401934 hasConceptScore W3189401934C44154836 @default.
- W3189401934 hasConceptScore W3189401934C50644808 @default.
- W3189401934 hasConceptScore W3189401934C548081761 @default.
- W3189401934 hasConceptScore W3189401934C72921944 @default.
- W3189401934 hasConceptScore W3189401934C78519656 @default.
- W3189401934 hasFunder F4320321001 @default.
- W3189401934 hasFunder F4320321133 @default.
- W3189401934 hasFunder F4320329690 @default.
- W3189401934 hasFunder F4320335614 @default.