Matches in SemOpenAlex for { <https://semopenalex.org/work/W3189451737> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3189451737 endingPage "5" @default.
- W3189451737 startingPage "1" @default.
- W3189451737 abstract "In the task of change detection (CD), high-resolution remote sensing images (HRSIs) can provide rich ground object information. However, the interference from noise and complex background information can also bring some challenges to CD. In recent years, deep learning methods represented by convolutional neural networks (CNNs) have achieved good CD results. However, the existing methods have difficulty in detecting the detailed change information of the ground objects effectively. The imbalance of positive and negative samples can also seriously affect the CD results. In this letter, to solve the above problems, we propose a method based on a multiscale fully convolutional neural network (MFCN), which uses multiscale convolution kernels to extract the detailed features of the ground object features. A loss function combining weighted binary cross-entropy (WBCE) loss and dice coefficient loss is also proposed, so that the model can be trained from unbalanced samples. The proposed method was compared with six state-of-the-art CD methods on the DigitalGlobe dataset. The experiments showed that the proposed method can achieve a higher <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>F1</i> -score, and the detection effect of the detailed changes was better than that of the other methods." @default.
- W3189451737 created "2021-08-16" @default.
- W3189451737 creator A5013765343 @default.
- W3189451737 creator A5015445262 @default.
- W3189451737 creator A5048639910 @default.
- W3189451737 creator A5064776886 @default.
- W3189451737 date "2022-01-01" @default.
- W3189451737 modified "2023-10-05" @default.
- W3189451737 title "A Combined Loss-Based Multiscale Fully Convolutional Network for High-Resolution Remote Sensing Image Change Detection" @default.
- W3189451737 cites W2029654245 @default.
- W3189451737 cites W2036798369 @default.
- W3189451737 cites W2097117768 @default.
- W3189451737 cites W2130041555 @default.
- W3189451737 cites W2134969826 @default.
- W3189451737 cites W2144552105 @default.
- W3189451737 cites W2312255383 @default.
- W3189451737 cites W2331914796 @default.
- W3189451737 cites W2579702661 @default.
- W3189451737 cites W2789813335 @default.
- W3189451737 cites W2804668696 @default.
- W3189451737 cites W2805152403 @default.
- W3189451737 cites W3010257550 @default.
- W3189451737 cites W3014160857 @default.
- W3189451737 doi "https://doi.org/10.1109/lgrs.2021.3098774" @default.
- W3189451737 hasPublicationYear "2022" @default.
- W3189451737 type Work @default.
- W3189451737 sameAs 3189451737 @default.
- W3189451737 citedByCount "41" @default.
- W3189451737 countsByYear W31894517372021 @default.
- W3189451737 countsByYear W31894517372022 @default.
- W3189451737 countsByYear W31894517372023 @default.
- W3189451737 crossrefType "journal-article" @default.
- W3189451737 hasAuthorship W3189451737A5013765343 @default.
- W3189451737 hasAuthorship W3189451737A5015445262 @default.
- W3189451737 hasAuthorship W3189451737A5048639910 @default.
- W3189451737 hasAuthorship W3189451737A5064776886 @default.
- W3189451737 hasConcept C106301342 @default.
- W3189451737 hasConcept C108583219 @default.
- W3189451737 hasConcept C121332964 @default.
- W3189451737 hasConcept C153180895 @default.
- W3189451737 hasConcept C154945302 @default.
- W3189451737 hasConcept C167981619 @default.
- W3189451737 hasConcept C203595873 @default.
- W3189451737 hasConcept C2776151529 @default.
- W3189451737 hasConcept C41008148 @default.
- W3189451737 hasConcept C45347329 @default.
- W3189451737 hasConcept C50644808 @default.
- W3189451737 hasConcept C62520636 @default.
- W3189451737 hasConcept C81363708 @default.
- W3189451737 hasConceptScore W3189451737C106301342 @default.
- W3189451737 hasConceptScore W3189451737C108583219 @default.
- W3189451737 hasConceptScore W3189451737C121332964 @default.
- W3189451737 hasConceptScore W3189451737C153180895 @default.
- W3189451737 hasConceptScore W3189451737C154945302 @default.
- W3189451737 hasConceptScore W3189451737C167981619 @default.
- W3189451737 hasConceptScore W3189451737C203595873 @default.
- W3189451737 hasConceptScore W3189451737C2776151529 @default.
- W3189451737 hasConceptScore W3189451737C41008148 @default.
- W3189451737 hasConceptScore W3189451737C45347329 @default.
- W3189451737 hasConceptScore W3189451737C50644808 @default.
- W3189451737 hasConceptScore W3189451737C62520636 @default.
- W3189451737 hasConceptScore W3189451737C81363708 @default.
- W3189451737 hasFunder F4320321001 @default.
- W3189451737 hasFunder F4320335777 @default.
- W3189451737 hasLocation W31894517371 @default.
- W3189451737 hasOpenAccess W3189451737 @default.
- W3189451737 hasPrimaryLocation W31894517371 @default.
- W3189451737 hasRelatedWork W2606416966 @default.
- W3189451737 hasRelatedWork W2731899572 @default.
- W3189451737 hasRelatedWork W2999805992 @default.
- W3189451737 hasRelatedWork W3116150086 @default.
- W3189451737 hasRelatedWork W3133861977 @default.
- W3189451737 hasRelatedWork W4200173597 @default.
- W3189451737 hasRelatedWork W4291897433 @default.
- W3189451737 hasRelatedWork W4311401716 @default.
- W3189451737 hasRelatedWork W4312417841 @default.
- W3189451737 hasRelatedWork W4321369474 @default.
- W3189451737 hasVolume "19" @default.
- W3189451737 isParatext "false" @default.
- W3189451737 isRetracted "false" @default.
- W3189451737 magId "3189451737" @default.
- W3189451737 workType "article" @default.