Matches in SemOpenAlex for { <https://semopenalex.org/work/W3189506985> ?p ?o ?g. }
- W3189506985 endingPage "7936" @default.
- W3189506985 startingPage "7920" @default.
- W3189506985 abstract "There are many important fields involving the multilinear system identification. A great number of parameters to be identified is an important challenge, leading to the need for tensorial decomposition and modeling of such systems. This article is about the parameter estimation of the higher-order multilinear systems with non-Gaussian noises and to explore the role of tensor algebra in the multilinear model identification. A high-dimension system identification problem is reformulated in terms of low-dimension problems by using the tensorial decomposition technique. Further, applying the multi-innovation identification theory, the recursive algorithm combining with the logarithmic p-norms is investigated for multilinear systems with non-Gaussian noises of low computational complexity. Finally, some simulation results illustrate the effectiveness of the proposed recursive identification method." @default.
- W3189506985 created "2021-08-16" @default.
- W3189506985 creator A5023406954 @default.
- W3189506985 creator A5048749344 @default.
- W3189506985 date "2021-08-06" @default.
- W3189506985 modified "2023-10-06" @default.
- W3189506985 title "An efficient recursive identification algorithm for multilinear systems based on tensor decomposition" @default.
- W3189506985 cites W1513230388 @default.
- W3189506985 cites W1968119930 @default.
- W3189506985 cites W1992970622 @default.
- W3189506985 cites W1993482030 @default.
- W3189506985 cites W2005741518 @default.
- W3189506985 cites W2010954562 @default.
- W3189506985 cites W2013912476 @default.
- W3189506985 cites W2022103235 @default.
- W3189506985 cites W2024165284 @default.
- W3189506985 cites W2028273200 @default.
- W3189506985 cites W2038920431 @default.
- W3189506985 cites W2039059715 @default.
- W3189506985 cites W2048636460 @default.
- W3189506985 cites W2060458267 @default.
- W3189506985 cites W2073726461 @default.
- W3189506985 cites W2119412403 @default.
- W3189506985 cites W2130242703 @default.
- W3189506985 cites W2199244493 @default.
- W3189506985 cites W2281031972 @default.
- W3189506985 cites W2469230926 @default.
- W3189506985 cites W2489822048 @default.
- W3189506985 cites W2536468953 @default.
- W3189506985 cites W2551181965 @default.
- W3189506985 cites W2614481326 @default.
- W3189506985 cites W2751852507 @default.
- W3189506985 cites W2763015773 @default.
- W3189506985 cites W2763074670 @default.
- W3189506985 cites W2767257026 @default.
- W3189506985 cites W2783556645 @default.
- W3189506985 cites W2789499284 @default.
- W3189506985 cites W2791255579 @default.
- W3189506985 cites W2792051776 @default.
- W3189506985 cites W2792920294 @default.
- W3189506985 cites W2839526029 @default.
- W3189506985 cites W2890592420 @default.
- W3189506985 cites W2900774998 @default.
- W3189506985 cites W2903250535 @default.
- W3189506985 cites W2907729329 @default.
- W3189506985 cites W2914714419 @default.
- W3189506985 cites W2921260354 @default.
- W3189506985 cites W2941741524 @default.
- W3189506985 cites W2946841978 @default.
- W3189506985 cites W2951394971 @default.
- W3189506985 cites W2951507907 @default.
- W3189506985 cites W2966067846 @default.
- W3189506985 cites W2971414156 @default.
- W3189506985 cites W2980799672 @default.
- W3189506985 cites W2982824732 @default.
- W3189506985 cites W2993509553 @default.
- W3189506985 cites W3004910756 @default.
- W3189506985 cites W3012661762 @default.
- W3189506985 cites W3014764454 @default.
- W3189506985 cites W3017153079 @default.
- W3189506985 cites W3023992121 @default.
- W3189506985 cites W3036353324 @default.
- W3189506985 cites W3043723847 @default.
- W3189506985 cites W3080277485 @default.
- W3189506985 cites W3084014984 @default.
- W3189506985 cites W3084331446 @default.
- W3189506985 cites W3088346701 @default.
- W3189506985 cites W3090480494 @default.
- W3189506985 cites W3091623858 @default.
- W3189506985 cites W3093317881 @default.
- W3189506985 cites W3093537666 @default.
- W3189506985 cites W3100383218 @default.
- W3189506985 cites W3103861957 @default.
- W3189506985 cites W3112777339 @default.
- W3189506985 cites W3113286871 @default.
- W3189506985 cites W3118313511 @default.
- W3189506985 cites W3135018611 @default.
- W3189506985 cites W3137017798 @default.
- W3189506985 cites W3137402093 @default.
- W3189506985 cites W4240691156 @default.
- W3189506985 doi "https://doi.org/10.1002/rnc.5718" @default.
- W3189506985 hasPublicationYear "2021" @default.
- W3189506985 type Work @default.
- W3189506985 sameAs 3189506985 @default.
- W3189506985 citedByCount "44" @default.
- W3189506985 countsByYear W31895069852022 @default.
- W3189506985 countsByYear W31895069852023 @default.
- W3189506985 crossrefType "journal-article" @default.
- W3189506985 hasAuthorship W3189506985A5023406954 @default.
- W3189506985 hasAuthorship W3189506985A5048749344 @default.
- W3189506985 hasConcept C11413529 @default.
- W3189506985 hasConcept C116834253 @default.
- W3189506985 hasConcept C119247159 @default.
- W3189506985 hasConcept C121332964 @default.
- W3189506985 hasConcept C124681953 @default.
- W3189506985 hasConcept C126255220 @default.
- W3189506985 hasConcept C134306372 @default.
- W3189506985 hasConcept C136119220 @default.