Matches in SemOpenAlex for { <https://semopenalex.org/work/W3189553628> ?p ?o ?g. }
- W3189553628 endingPage "350" @default.
- W3189553628 startingPage "293" @default.
- W3189553628 abstract "Deep learning is slowly taking over the medical image analysis field with advancements in imaging tools, and growing demand for fast, accurate, and automated image analysis. In this chapter we have extensively reviewed the field from inception to its current state-of-the-art techniques. We begin by introducing imaging advancements over the decades, followed by general pre-analysis processes. Further, we describe the different kinds of deep learning models used for image analysis, after broadly classifying them into supervised and unsupervised learning. Here the chapter touches upon the architecture and complex functionality of each layer of such a deep neural network. CNN being one of the most popular tools for image analysis is then reviewed in-depth. We have discussed its architecture and learning along with the mathematical framework behind it, followed by real-world applications. The second half of this chapter is devoted to the biological applications of deep learning. We start by reviewing advancements from sub-cellular to cellular to the tissue level, ending with an extensive review at the organ level. We have included various deep learning tools and techniques that people have attempted to better understand the morphology and physiology of the human body, and its related diseases. Finally, the chapter ends with current field-specific challenges and the ways forward to eliminate them." @default.
- W3189553628 created "2021-08-16" @default.
- W3189553628 creator A5031309167 @default.
- W3189553628 creator A5035213829 @default.
- W3189553628 creator A5084364240 @default.
- W3189553628 date "2021-08-06" @default.
- W3189553628 modified "2023-10-12" @default.
- W3189553628 title "Deep Learning Applications in Medical Image Analysis" @default.
- W3189553628 cites W127494906 @default.
- W3189553628 cites W1500359668 @default.
- W3189553628 cites W1540008990 @default.
- W3189553628 cites W1608218651 @default.
- W3189553628 cites W168227540 @default.
- W3189553628 cites W1871050032 @default.
- W3189553628 cites W1884191083 @default.
- W3189553628 cites W1917706530 @default.
- W3189553628 cites W1968114652 @default.
- W3189553628 cites W1970580356 @default.
- W3189553628 cites W1974874858 @default.
- W3189553628 cites W1976196376 @default.
- W3189553628 cites W1988452762 @default.
- W3189553628 cites W1989815930 @default.
- W3189553628 cites W1992303404 @default.
- W3189553628 cites W1995341919 @default.
- W3189553628 cites W2011465808 @default.
- W3189553628 cites W2019289784 @default.
- W3189553628 cites W2038731209 @default.
- W3189553628 cites W2040870580 @default.
- W3189553628 cites W2042492924 @default.
- W3189553628 cites W2042907121 @default.
- W3189553628 cites W2059272842 @default.
- W3189553628 cites W2066973160 @default.
- W3189553628 cites W2076317736 @default.
- W3189553628 cites W2076448238 @default.
- W3189553628 cites W2082526668 @default.
- W3189553628 cites W2101926813 @default.
- W3189553628 cites W2110485445 @default.
- W3189553628 cites W2120236285 @default.
- W3189553628 cites W2130496575 @default.
- W3189553628 cites W2132822444 @default.
- W3189553628 cites W2136922672 @default.
- W3189553628 cites W2145752049 @default.
- W3189553628 cites W2147443169 @default.
- W3189553628 cites W2147800946 @default.
- W3189553628 cites W2152482858 @default.
- W3189553628 cites W2154051385 @default.
- W3189553628 cites W2161113826 @default.
- W3189553628 cites W2175803585 @default.
- W3189553628 cites W2272122054 @default.
- W3189553628 cites W2295309472 @default.
- W3189553628 cites W2301358467 @default.
- W3189553628 cites W2310992461 @default.
- W3189553628 cites W2312404985 @default.
- W3189553628 cites W2334242740 @default.
- W3189553628 cites W2342591535 @default.
- W3189553628 cites W2343172899 @default.
- W3189553628 cites W2343861259 @default.
- W3189553628 cites W2347064614 @default.
- W3189553628 cites W2402050431 @default.
- W3189553628 cites W2408733084 @default.
- W3189553628 cites W2476370993 @default.
- W3189553628 cites W2508457857 @default.
- W3189553628 cites W2516903654 @default.
- W3189553628 cites W2524608787 @default.
- W3189553628 cites W2526712471 @default.
- W3189553628 cites W2526958461 @default.
- W3189553628 cites W2529153069 @default.
- W3189553628 cites W2548342201 @default.
- W3189553628 cites W2551562422 @default.
- W3189553628 cites W2557738935 @default.
- W3189553628 cites W2560014990 @default.
- W3189553628 cites W2564782580 @default.
- W3189553628 cites W2570202822 @default.
- W3189553628 cites W2573123177 @default.
- W3189553628 cites W2577893174 @default.
- W3189553628 cites W2581082771 @default.
- W3189553628 cites W2589409328 @default.
- W3189553628 cites W2592765733 @default.
- W3189553628 cites W2592929672 @default.
- W3189553628 cites W2594014149 @default.
- W3189553628 cites W2606209624 @default.
- W3189553628 cites W2609584387 @default.
- W3189553628 cites W2620578070 @default.
- W3189553628 cites W2621235041 @default.
- W3189553628 cites W2743780012 @default.
- W3189553628 cites W2761668583 @default.
- W3189553628 cites W2772246530 @default.
- W3189553628 cites W2772723798 @default.
- W3189553628 cites W2777186991 @default.
- W3189553628 cites W2777741489 @default.
- W3189553628 cites W2788633781 @default.
- W3189553628 cites W2791307013 @default.
- W3189553628 cites W2794977498 @default.
- W3189553628 cites W2795106634 @default.
- W3189553628 cites W2796809202 @default.
- W3189553628 cites W2799005222 @default.
- W3189553628 cites W2801396275 @default.
- W3189553628 cites W2803176574 @default.