Matches in SemOpenAlex for { <https://semopenalex.org/work/W3189706220> ?p ?o ?g. }
- W3189706220 endingPage "115714" @default.
- W3189706220 startingPage "115714" @default.
- W3189706220 abstract "• CNN-BiLSTM can integrate spatial features and temporal correlation of FHR signals. • Attention is focused on more relevant features for fetal acidosis classification. • DWT can reduce the overfitting and improve the accuracy of model classification. Cardiotocography (CTG) is widely used in fetal monitoring, especially in the diagnosis of fetal acidosis. However, the manual interpretation of CTG analysis may easily lead to a low diagnostic rate, usually caused by various subjective factors. In order to reduce misdiagnosis, we propose an attention-based CNN-BiLSTM hybrid neural network enhanced with features of discrete wavelet transformation (DWT) for fetal acidosis classification. A joint model of convolutional neural network (CNN) and bi-directional long short-term memory (BiLSTM) is established to capture the complex nonlinear spatial and temporal relations of fetal heart rate (FHR) signals. The attention mechanism is then adopted to focus on important input features. And DWT is used to obtain FHR signals transformation coefficient features in order to reduce overfitting. Two features are fused together to classify fetal acidosis. This study uses signals from the public databases of the CTU-UHB for evaluation. A ten different verifications yields average sensitivity (SE), specificity (SP), and quality index (QI) of 75.23%, 70.82% and 72.29%, respectively. Our approach achieves better experimental results than previous works. Moreover, Our hybrid model is an end to end one, with a much simpler DWT feature extraction. With the advent of the big data era, our hybrid model will have great advantages." @default.
- W3189706220 created "2021-08-16" @default.
- W3189706220 creator A5009284742 @default.
- W3189706220 creator A5013039708 @default.
- W3189706220 creator A5021867281 @default.
- W3189706220 creator A5027066155 @default.
- W3189706220 creator A5048231811 @default.
- W3189706220 date "2021-12-01" @default.
- W3189706220 modified "2023-10-17" @default.
- W3189706220 title "An attention-based CNN-BiLSTM hybrid neural network enhanced with features of discrete wavelet transformation for fetal acidosis classification" @default.
- W3189706220 cites W1670809309 @default.
- W3189706220 cites W1931727703 @default.
- W3189706220 cites W1972892492 @default.
- W3189706220 cites W1975929856 @default.
- W3189706220 cites W1996341174 @default.
- W3189706220 cites W2005935821 @default.
- W3189706220 cites W2018115628 @default.
- W3189706220 cites W2035471206 @default.
- W3189706220 cites W2044869919 @default.
- W3189706220 cites W2057022479 @default.
- W3189706220 cites W2064675550 @default.
- W3189706220 cites W2066067927 @default.
- W3189706220 cites W2079735306 @default.
- W3189706220 cites W2109423774 @default.
- W3189706220 cites W2137431738 @default.
- W3189706220 cites W2154712666 @default.
- W3189706220 cites W2168691138 @default.
- W3189706220 cites W2171630164 @default.
- W3189706220 cites W2204077829 @default.
- W3189706220 cites W2385241259 @default.
- W3189706220 cites W2470673105 @default.
- W3189706220 cites W2554401924 @default.
- W3189706220 cites W2566250334 @default.
- W3189706220 cites W2618530766 @default.
- W3189706220 cites W2726354947 @default.
- W3189706220 cites W2739146657 @default.
- W3189706220 cites W2774072613 @default.
- W3189706220 cites W2804196013 @default.
- W3189706220 cites W2805778166 @default.
- W3189706220 cites W2854349075 @default.
- W3189706220 cites W2886085536 @default.
- W3189706220 cites W2886982273 @default.
- W3189706220 cites W2902644322 @default.
- W3189706220 cites W2921069656 @default.
- W3189706220 cites W2944471958 @default.
- W3189706220 cites W2965982242 @default.
- W3189706220 cites W4300832300 @default.
- W3189706220 cites W563786679 @default.
- W3189706220 cites W798407487 @default.
- W3189706220 doi "https://doi.org/10.1016/j.eswa.2021.115714" @default.
- W3189706220 hasPublicationYear "2021" @default.
- W3189706220 type Work @default.
- W3189706220 sameAs 3189706220 @default.
- W3189706220 citedByCount "36" @default.
- W3189706220 countsByYear W31897062202022 @default.
- W3189706220 countsByYear W31897062202023 @default.
- W3189706220 crossrefType "journal-article" @default.
- W3189706220 hasAuthorship W3189706220A5009284742 @default.
- W3189706220 hasAuthorship W3189706220A5013039708 @default.
- W3189706220 hasAuthorship W3189706220A5021867281 @default.
- W3189706220 hasAuthorship W3189706220A5027066155 @default.
- W3189706220 hasAuthorship W3189706220A5048231811 @default.
- W3189706220 hasConcept C104317684 @default.
- W3189706220 hasConcept C119857082 @default.
- W3189706220 hasConcept C153180895 @default.
- W3189706220 hasConcept C154945302 @default.
- W3189706220 hasConcept C185592680 @default.
- W3189706220 hasConcept C204241405 @default.
- W3189706220 hasConcept C41008148 @default.
- W3189706220 hasConcept C47432892 @default.
- W3189706220 hasConcept C50644808 @default.
- W3189706220 hasConcept C55493867 @default.
- W3189706220 hasConceptScore W3189706220C104317684 @default.
- W3189706220 hasConceptScore W3189706220C119857082 @default.
- W3189706220 hasConceptScore W3189706220C153180895 @default.
- W3189706220 hasConceptScore W3189706220C154945302 @default.
- W3189706220 hasConceptScore W3189706220C185592680 @default.
- W3189706220 hasConceptScore W3189706220C204241405 @default.
- W3189706220 hasConceptScore W3189706220C41008148 @default.
- W3189706220 hasConceptScore W3189706220C47432892 @default.
- W3189706220 hasConceptScore W3189706220C50644808 @default.
- W3189706220 hasConceptScore W3189706220C55493867 @default.
- W3189706220 hasFunder F4320321001 @default.
- W3189706220 hasFunder F4320335777 @default.
- W3189706220 hasLocation W31897062201 @default.
- W3189706220 hasOpenAccess W3189706220 @default.
- W3189706220 hasPrimaryLocation W31897062201 @default.
- W3189706220 hasRelatedWork W2117363999 @default.
- W3189706220 hasRelatedWork W2148116311 @default.
- W3189706220 hasRelatedWork W2358046650 @default.
- W3189706220 hasRelatedWork W2390972240 @default.
- W3189706220 hasRelatedWork W2541950815 @default.
- W3189706220 hasRelatedWork W2739734757 @default.
- W3189706220 hasRelatedWork W2961085424 @default.
- W3189706220 hasRelatedWork W4306674287 @default.
- W3189706220 hasRelatedWork W810659553 @default.
- W3189706220 hasRelatedWork W1629725936 @default.
- W3189706220 hasVolume "186" @default.