Matches in SemOpenAlex for { <https://semopenalex.org/work/W3189718810> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3189718810 endingPage "3781" @default.
- W3189718810 startingPage "3771" @default.
- W3189718810 abstract "Deep learning has shown outstanding efficiency in medical image segmentation. Segmentation of knee tissues is an important task for early diagnosis of rheumatoid arthritis (RA) with selecting variant features. Automated segmentation and feature extraction of knee tissues are desirable for faster and reliable analysis of large datasets and further diagnosis. In this paper a novel architecture called as Discrete-MultiResUNet, which is a combination of discrete wavelet transform (DWT) with MultiResUNet architecture is applied for feature extraction and segmentation, respectively. This hybrid architecture captures more prominent features from the knee magnetic resonance image efficiently with segmenting vital knee tissues. The hybrid model is evaluated on the knee MR dataset demonstrating outperforming performance compared with baseline models. The model achieves excellent segmentation performance accuracy of 96.77% with a dice coefficient of 98%." @default.
- W3189718810 created "2021-08-16" @default.
- W3189718810 creator A5049260198 @default.
- W3189718810 creator A5087386424 @default.
- W3189718810 date "2021-09-15" @default.
- W3189718810 modified "2023-10-16" @default.
- W3189718810 title "Discrete-MultiResUNet: Segmentation and feature extraction model for knee MR images" @default.
- W3189718810 cites W1972278775 @default.
- W3189718810 cites W1978046161 @default.
- W3189718810 cites W2025173276 @default.
- W3189718810 cites W2032336008 @default.
- W3189718810 cites W2069486599 @default.
- W3189718810 cites W2080886874 @default.
- W3189718810 cites W2139294793 @default.
- W3189718810 cites W2300207703 @default.
- W3189718810 cites W2589190669 @default.
- W3189718810 cites W2737373222 @default.
- W3189718810 cites W2799885843 @default.
- W3189718810 cites W2803328900 @default.
- W3189718810 cites W2803537647 @default.
- W3189718810 cites W2885303411 @default.
- W3189718810 cites W2890507959 @default.
- W3189718810 cites W2945682521 @default.
- W3189718810 cites W2963420272 @default.
- W3189718810 cites W2992133468 @default.
- W3189718810 cites W2997876081 @default.
- W3189718810 cites W3015377322 @default.
- W3189718810 cites W3036622655 @default.
- W3189718810 cites W3038507111 @default.
- W3189718810 cites W3048845749 @default.
- W3189718810 cites W3081752372 @default.
- W3189718810 cites W3091723340 @default.
- W3189718810 cites W3106061934 @default.
- W3189718810 cites W3111163092 @default.
- W3189718810 cites W3125832420 @default.
- W3189718810 cites W4240211638 @default.
- W3189718810 doi "https://doi.org/10.3233/jifs-211459" @default.
- W3189718810 hasPublicationYear "2021" @default.
- W3189718810 type Work @default.
- W3189718810 sameAs 3189718810 @default.
- W3189718810 citedByCount "5" @default.
- W3189718810 countsByYear W31897188102022 @default.
- W3189718810 countsByYear W31897188102023 @default.
- W3189718810 crossrefType "journal-article" @default.
- W3189718810 hasAuthorship W3189718810A5049260198 @default.
- W3189718810 hasAuthorship W3189718810A5087386424 @default.
- W3189718810 hasConcept C124504099 @default.
- W3189718810 hasConcept C138885662 @default.
- W3189718810 hasConcept C153180895 @default.
- W3189718810 hasConcept C154945302 @default.
- W3189718810 hasConcept C163892561 @default.
- W3189718810 hasConcept C196216189 @default.
- W3189718810 hasConcept C2776401178 @default.
- W3189718810 hasConcept C31972630 @default.
- W3189718810 hasConcept C41008148 @default.
- W3189718810 hasConcept C41895202 @default.
- W3189718810 hasConcept C46286280 @default.
- W3189718810 hasConcept C47432892 @default.
- W3189718810 hasConcept C52622490 @default.
- W3189718810 hasConcept C65885262 @default.
- W3189718810 hasConcept C89600930 @default.
- W3189718810 hasConceptScore W3189718810C124504099 @default.
- W3189718810 hasConceptScore W3189718810C138885662 @default.
- W3189718810 hasConceptScore W3189718810C153180895 @default.
- W3189718810 hasConceptScore W3189718810C154945302 @default.
- W3189718810 hasConceptScore W3189718810C163892561 @default.
- W3189718810 hasConceptScore W3189718810C196216189 @default.
- W3189718810 hasConceptScore W3189718810C2776401178 @default.
- W3189718810 hasConceptScore W3189718810C31972630 @default.
- W3189718810 hasConceptScore W3189718810C41008148 @default.
- W3189718810 hasConceptScore W3189718810C41895202 @default.
- W3189718810 hasConceptScore W3189718810C46286280 @default.
- W3189718810 hasConceptScore W3189718810C47432892 @default.
- W3189718810 hasConceptScore W3189718810C52622490 @default.
- W3189718810 hasConceptScore W3189718810C65885262 @default.
- W3189718810 hasConceptScore W3189718810C89600930 @default.
- W3189718810 hasIssue "2" @default.
- W3189718810 hasLocation W31897188101 @default.
- W3189718810 hasOpenAccess W3189718810 @default.
- W3189718810 hasPrimaryLocation W31897188101 @default.
- W3189718810 hasRelatedWork W1507266234 @default.
- W3189718810 hasRelatedWork W1669643531 @default.
- W3189718810 hasRelatedWork W2069711651 @default.
- W3189718810 hasRelatedWork W2117664411 @default.
- W3189718810 hasRelatedWork W2117933325 @default.
- W3189718810 hasRelatedWork W2549936415 @default.
- W3189718810 hasRelatedWork W2558375057 @default.
- W3189718810 hasRelatedWork W2739874619 @default.
- W3189718810 hasRelatedWork W3197341992 @default.
- W3189718810 hasRelatedWork W1967061043 @default.
- W3189718810 hasVolume "41" @default.
- W3189718810 isParatext "false" @default.
- W3189718810 isRetracted "false" @default.
- W3189718810 magId "3189718810" @default.
- W3189718810 workType "article" @default.