Matches in SemOpenAlex for { <https://semopenalex.org/work/W3189731981> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3189731981 abstract "Functional imaging especially the SPECT bone scintigraphy has been accepted as the effective clinical tool for diagnosis, treatment, evaluation, and prevention of various diseases including metastasis. However, SPECT imaging is brightly characterized by poor resolution, low signal-to-noise ratio, as well as the high sensitivity and low specificity because of the visually similar characteristics of lesions between diseases on imaging findings.Focusing on the automated diagnosis of diseases with whole-body SPECT scintigraphic images, in this work, a self-defined convolutional neural network is developed to survey the presence or absence of diseases of concern. The data preprocessing mainly including data augmentation is first conducted to cope with the problem of limited samples of SPECT images by applying the geometric transformation operations and generative adversarial network techniques on the original SPECT imaging data. An end-to-end deep SPECT image classification network named dSPIC is developed to extract the optimal features from images and then to classify these images into classes, including metastasis, arthritis, and normal, where there may be multiple diseases existing in a single image.A group of real-world data of whole-body SPECT images is used to evaluate the self-defined network, obtaining a best (worst) value of 0.7747 (0.6910), 0.7883 (0.7407), 0.7863 (0.6956), 0.8820 (0.8273) and 0.7860 (0.7230) for accuracy, precision, sensitivity, specificity, and F-1 score, respectively, on the testing samples from the original and augmented datasets.The prominent classification performance in contrast to other related deep classifiers including the classical AlexNet network demonstrates that the built deep network dSPIC is workable and promising for the multi-disease, multi-lesion classification task of whole-body SPECT bone scintigraphy images." @default.
- W3189731981 created "2021-08-16" @default.
- W3189731981 creator A5003462637 @default.
- W3189731981 creator A5007941220 @default.
- W3189731981 creator A5022526929 @default.
- W3189731981 creator A5063870450 @default.
- W3189731981 creator A5072978209 @default.
- W3189731981 creator A5077528633 @default.
- W3189731981 date "2021-08-11" @default.
- W3189731981 modified "2023-10-08" @default.
- W3189731981 title "dSPIC: a deep SPECT image classification network for automated multi-disease, multi-lesion diagnosis" @default.
- W3189731981 cites W1782982357 @default.
- W3189731981 cites W1982628525 @default.
- W3189731981 cites W2026280768 @default.
- W3189731981 cites W205594890 @default.
- W3189731981 cites W2128631602 @default.
- W3189731981 cites W2501158386 @default.
- W3189731981 cites W2592929672 @default.
- W3189731981 cites W2803974577 @default.
- W3189731981 cites W2915500027 @default.
- W3189731981 cites W2971445890 @default.
- W3189731981 cites W3005061589 @default.
- W3189731981 cites W3014605657 @default.
- W3189731981 cites W3043289003 @default.
- W3189731981 cites W3046103539 @default.
- W3189731981 cites W3049521066 @default.
- W3189731981 cites W3080336025 @default.
- W3189731981 cites W3092312060 @default.
- W3189731981 cites W3094164911 @default.
- W3189731981 cites W3119036516 @default.
- W3189731981 cites W3130593802 @default.
- W3189731981 cites W3138784776 @default.
- W3189731981 cites W3155258968 @default.
- W3189731981 cites W3160874522 @default.
- W3189731981 doi "https://doi.org/10.1186/s12880-021-00653-w" @default.
- W3189731981 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8359584" @default.
- W3189731981 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34380441" @default.
- W3189731981 hasPublicationYear "2021" @default.
- W3189731981 type Work @default.
- W3189731981 sameAs 3189731981 @default.
- W3189731981 citedByCount "11" @default.
- W3189731981 countsByYear W31897319812022 @default.
- W3189731981 countsByYear W31897319812023 @default.
- W3189731981 crossrefType "journal-article" @default.
- W3189731981 hasAuthorship W3189731981A5003462637 @default.
- W3189731981 hasAuthorship W3189731981A5007941220 @default.
- W3189731981 hasAuthorship W3189731981A5022526929 @default.
- W3189731981 hasAuthorship W3189731981A5063870450 @default.
- W3189731981 hasAuthorship W3189731981A5072978209 @default.
- W3189731981 hasAuthorship W3189731981A5077528633 @default.
- W3189731981 hasBestOaLocation W31897319811 @default.
- W3189731981 hasConcept C108583219 @default.
- W3189731981 hasConcept C153180895 @default.
- W3189731981 hasConcept C154945302 @default.
- W3189731981 hasConcept C2984398910 @default.
- W3189731981 hasConcept C2989005 @default.
- W3189731981 hasConcept C34736171 @default.
- W3189731981 hasConcept C41008148 @default.
- W3189731981 hasConcept C71924100 @default.
- W3189731981 hasConcept C81363708 @default.
- W3189731981 hasConceptScore W3189731981C108583219 @default.
- W3189731981 hasConceptScore W3189731981C153180895 @default.
- W3189731981 hasConceptScore W3189731981C154945302 @default.
- W3189731981 hasConceptScore W3189731981C2984398910 @default.
- W3189731981 hasConceptScore W3189731981C2989005 @default.
- W3189731981 hasConceptScore W3189731981C34736171 @default.
- W3189731981 hasConceptScore W3189731981C41008148 @default.
- W3189731981 hasConceptScore W3189731981C71924100 @default.
- W3189731981 hasConceptScore W3189731981C81363708 @default.
- W3189731981 hasFunder F4320321001 @default.
- W3189731981 hasFunder F4320322880 @default.
- W3189731981 hasFunder F4320335787 @default.
- W3189731981 hasIssue "1" @default.
- W3189731981 hasLocation W31897319811 @default.
- W3189731981 hasLocation W31897319812 @default.
- W3189731981 hasLocation W31897319813 @default.
- W3189731981 hasLocation W31897319814 @default.
- W3189731981 hasOpenAccess W3189731981 @default.
- W3189731981 hasPrimaryLocation W31897319811 @default.
- W3189731981 hasRelatedWork W2731899572 @default.
- W3189731981 hasRelatedWork W2732542196 @default.
- W3189731981 hasRelatedWork W2738221750 @default.
- W3189731981 hasRelatedWork W2977314777 @default.
- W3189731981 hasRelatedWork W3133861977 @default.
- W3189731981 hasRelatedWork W3156786002 @default.
- W3189731981 hasRelatedWork W3159690776 @default.
- W3189731981 hasRelatedWork W4312417841 @default.
- W3189731981 hasRelatedWork W4321369474 @default.
- W3189731981 hasRelatedWork W564581980 @default.
- W3189731981 hasVolume "21" @default.
- W3189731981 isParatext "false" @default.
- W3189731981 isRetracted "false" @default.
- W3189731981 magId "3189731981" @default.
- W3189731981 workType "article" @default.