Matches in SemOpenAlex for { <https://semopenalex.org/work/W3189777777> ?p ?o ?g. }
- W3189777777 abstract "The physical and clinical constraints surrounding diffusion-weighted imaging (DWI) often limit the spatial resolution of the produced images to voxels up to eight times larger than those of T1w images. The detailed information contained in accessible high-resolution T1w images could help in the synthesis of diffusion images with a greater level of detail. However, the non-Euclidean nature of diffusion imaging hinders current deep generative models from synthesizing physically plausible images. In this work, we propose the first Riemannian network architecture for the direct generation of diffusion tensors (DT) and diffusion orientation distribution functions (dODFs) from high-resolution T1w images. Our integration of the log-Euclidean Metric into a learning objective guarantees, unlike standard Euclidean networks, the mathematically-valid synthesis of diffusion. Furthermore, our approach improves the fractional anisotropy mean squared error (FA MSE) between the synthesized diffusion and the ground-truth by more than 23% and the cosine similarity between principal directions by almost 5% when compared to our baselines. We validate our generated diffusion by comparing the resulting tractograms to our expected real data. We observe similar fiber bundles with streamlines having <3% difference in length, <1% difference in volume, and a visually close shape. While our method is able to generate diffusion images from structural inputs in a high-resolution space within 15 s, we acknowledge and discuss the limits of diffusion inference solely relying on T1w images. Our results nonetheless suggest a relationship between the high-level geometry of the brain and its overall white matter architecture that remains to be explored." @default.
- W3189777777 created "2021-08-16" @default.
- W3189777777 creator A5017608284 @default.
- W3189777777 creator A5024768344 @default.
- W3189777777 creator A5045679867 @default.
- W3189777777 creator A5064644687 @default.
- W3189777777 creator A5081384832 @default.
- W3189777777 creator A5086581005 @default.
- W3189777777 date "2022-09-08" @default.
- W3189777777 modified "2023-10-05" @default.
- W3189777777 title "Manifold-aware synthesis of high-resolution diffusion from structural imaging" @default.
- W3189777777 cites W1491351298 @default.
- W3189777777 cites W1556167233 @default.
- W3189777777 cites W1979310540 @default.
- W3189777777 cites W1979325788 @default.
- W3189777777 cites W1983208069 @default.
- W3189777777 cites W1988954604 @default.
- W3189777777 cites W2019737946 @default.
- W3189777777 cites W2024729467 @default.
- W3189777777 cites W2033904073 @default.
- W3189777777 cites W2037701101 @default.
- W3189777777 cites W2045859570 @default.
- W3189777777 cites W2048192550 @default.
- W3189777777 cites W2048897033 @default.
- W3189777777 cites W2062791478 @default.
- W3189777777 cites W2067214598 @default.
- W3189777777 cites W2069816444 @default.
- W3189777777 cites W2091910928 @default.
- W3189777777 cites W2111508341 @default.
- W3189777777 cites W2112384020 @default.
- W3189777777 cites W2127610265 @default.
- W3189777777 cites W2133981072 @default.
- W3189777777 cites W2141417178 @default.
- W3189777777 cites W2517500902 @default.
- W3189777777 cites W2562637781 @default.
- W3189777777 cites W2591999117 @default.
- W3189777777 cites W2611281735 @default.
- W3189777777 cites W2735700022 @default.
- W3189777777 cites W2758113150 @default.
- W3189777777 cites W2767050687 @default.
- W3189777777 cites W2803837136 @default.
- W3189777777 cites W2945005065 @default.
- W3189777777 cites W2945263066 @default.
- W3189777777 cites W2947842866 @default.
- W3189777777 cites W2951295144 @default.
- W3189777777 cites W2963768110 @default.
- W3189777777 cites W2963837733 @default.
- W3189777777 cites W2970898057 @default.
- W3189777777 cites W2971797722 @default.
- W3189777777 cites W2979670006 @default.
- W3189777777 cites W2983420661 @default.
- W3189777777 cites W3000134386 @default.
- W3189777777 cites W3013429133 @default.
- W3189777777 cites W3026522746 @default.
- W3189777777 cites W3035037263 @default.
- W3189777777 cites W3091774503 @default.
- W3189777777 cites W3124614321 @default.
- W3189777777 cites W3158566850 @default.
- W3189777777 cites W4289086616 @default.
- W3189777777 doi "https://doi.org/10.3389/fnimg.2022.930496" @default.
- W3189777777 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37555146" @default.
- W3189777777 hasPublicationYear "2022" @default.
- W3189777777 type Work @default.
- W3189777777 sameAs 3189777777 @default.
- W3189777777 citedByCount "1" @default.
- W3189777777 countsByYear W31897777772023 @default.
- W3189777777 crossrefType "journal-article" @default.
- W3189777777 hasAuthorship W3189777777A5017608284 @default.
- W3189777777 hasAuthorship W3189777777A5024768344 @default.
- W3189777777 hasAuthorship W3189777777A5045679867 @default.
- W3189777777 hasAuthorship W3189777777A5064644687 @default.
- W3189777777 hasAuthorship W3189777777A5081384832 @default.
- W3189777777 hasAuthorship W3189777777A5086581005 @default.
- W3189777777 hasBestOaLocation W31897777771 @default.
- W3189777777 hasConcept C103278499 @default.
- W3189777777 hasConcept C115961682 @default.
- W3189777777 hasConcept C121332964 @default.
- W3189777777 hasConcept C126838900 @default.
- W3189777777 hasConcept C134306372 @default.
- W3189777777 hasConcept C138268822 @default.
- W3189777777 hasConcept C143409427 @default.
- W3189777777 hasConcept C149550507 @default.
- W3189777777 hasConcept C154945302 @default.
- W3189777777 hasConcept C162324750 @default.
- W3189777777 hasConcept C176217482 @default.
- W3189777777 hasConcept C186450821 @default.
- W3189777777 hasConcept C203504353 @default.
- W3189777777 hasConcept C205372480 @default.
- W3189777777 hasConcept C21547014 @default.
- W3189777777 hasConcept C31972630 @default.
- W3189777777 hasConcept C33923547 @default.
- W3189777777 hasConcept C41008148 @default.
- W3189777777 hasConcept C54170458 @default.
- W3189777777 hasConcept C69357855 @default.
- W3189777777 hasConcept C71924100 @default.
- W3189777777 hasConcept C84787856 @default.
- W3189777777 hasConcept C89916169 @default.
- W3189777777 hasConcept C97355855 @default.
- W3189777777 hasConceptScore W3189777777C103278499 @default.
- W3189777777 hasConceptScore W3189777777C115961682 @default.