Matches in SemOpenAlex for { <https://semopenalex.org/work/W3189791978> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3189791978 endingPage "13" @default.
- W3189791978 startingPage "1" @default.
- W3189791978 abstract "The purpose of this paper was to predict the path loss characterization of the ground-to-air (G2A) communication channel between the ground sensor (GS) and unmanned aerial vehicle (UAV) using machine learning (ML) models in smart farming (SF) scenarios. Two ML algorithms such as support vector regression (SVR) and artificial neural network (ANN) were studied to analyze the measured data in different scenarios with Napier and Ruzi grass farms as the measurement locations. The proposed empirical GS-to-UAV two-ray (GUT-R) model and the ML models were compared to characterize path loss prediction models. The performances of the path loss prediction models were evaluated using the statistical error indicators in different measurement locations and UAV trajectories. To obtain the statistical error indicators, the accuracy path loss results of UAV trajectory at 2 m altitudes showed the SVR model (MAE = 1.252 dB, RMSE = 3.067 dB, and R2 = 0.972) and the ANN model (MAE = 1.150 dB, RMSE = 2.502 dB, and R2 = 0.981) for the Napier scenario. In the Ruzi scenario, the SVR model (MAE = 1.202 dB, RMSE = 2.962 dB, and R2 = 0.965) and the ANN model (MAE = 1.146 dB, RMSE = 2.507 dB, and R2 = 0.983) were presented. For UAV trajectory at 5 m altitudes, the SVR model (MAE = 2.125 dB, RMSE = 4.782 dB, and R2 = 0.933) and the ANN model (MAE = 2.025 dB, RMSE = 4.439 dB, and R2 = 0.950) were resulted in the Napier scenario. In the Ruzi scenario, the SVR model (MAE = 2.112 dB, RMSE = 4.682 dB, and R2 = 0.935) and the ANN model (MAE = 2.016 dB, RMSE = 4.407 dB, and R2 = 0.954) were displayed. The proposed ML models using SVR and ANN can optimally predict the path loss characterization in SF scenarios, where the accuracy was 95% for the SVR and 97% for the ANN." @default.
- W3189791978 created "2021-08-16" @default.
- W3189791978 creator A5041472352 @default.
- W3189791978 creator A5050490621 @default.
- W3189791978 creator A5085780685 @default.
- W3189791978 date "2021-07-31" @default.
- W3189791978 modified "2023-10-14" @default.
- W3189791978 title "Path Loss Characterization Using Machine Learning Models for GS-to-UAV-Enabled Communication in Smart Farming Scenarios" @default.
- W3189791978 cites W189613003 @default.
- W3189791978 cites W2241420790 @default.
- W3189791978 cites W2484119988 @default.
- W3189791978 cites W2616222121 @default.
- W3189791978 cites W2737587394 @default.
- W3189791978 cites W2792789292 @default.
- W3189791978 cites W2807927039 @default.
- W3189791978 cites W2883087564 @default.
- W3189791978 cites W2893149982 @default.
- W3189791978 cites W2911352573 @default.
- W3189791978 cites W2944604179 @default.
- W3189791978 cites W2945889143 @default.
- W3189791978 cites W2950771482 @default.
- W3189791978 cites W2952532736 @default.
- W3189791978 cites W2963393241 @default.
- W3189791978 cites W2963395003 @default.
- W3189791978 cites W2966657623 @default.
- W3189791978 cites W2972341633 @default.
- W3189791978 cites W2980016373 @default.
- W3189791978 cites W2990204812 @default.
- W3189791978 cites W3000408141 @default.
- W3189791978 cites W3000503970 @default.
- W3189791978 cites W3010663476 @default.
- W3189791978 cites W3015635818 @default.
- W3189791978 cites W3025835050 @default.
- W3189791978 cites W3046086129 @default.
- W3189791978 doi "https://doi.org/10.1155/2021/5524709" @default.
- W3189791978 hasPublicationYear "2021" @default.
- W3189791978 type Work @default.
- W3189791978 sameAs 3189791978 @default.
- W3189791978 citedByCount "2" @default.
- W3189791978 countsByYear W31897919782022 @default.
- W3189791978 crossrefType "journal-article" @default.
- W3189791978 hasAuthorship W3189791978A5041472352 @default.
- W3189791978 hasAuthorship W3189791978A5050490621 @default.
- W3189791978 hasAuthorship W3189791978A5085780685 @default.
- W3189791978 hasBestOaLocation W31897919781 @default.
- W3189791978 hasConcept C105795698 @default.
- W3189791978 hasConcept C11413529 @default.
- W3189791978 hasConcept C119857082 @default.
- W3189791978 hasConcept C12267149 @default.
- W3189791978 hasConcept C139945424 @default.
- W3189791978 hasConcept C154945302 @default.
- W3189791978 hasConcept C194273485 @default.
- W3189791978 hasConcept C199360897 @default.
- W3189791978 hasConcept C2777735758 @default.
- W3189791978 hasConcept C33923547 @default.
- W3189791978 hasConcept C41008148 @default.
- W3189791978 hasConcept C50644808 @default.
- W3189791978 hasConcept C555944384 @default.
- W3189791978 hasConcept C76155785 @default.
- W3189791978 hasConceptScore W3189791978C105795698 @default.
- W3189791978 hasConceptScore W3189791978C11413529 @default.
- W3189791978 hasConceptScore W3189791978C119857082 @default.
- W3189791978 hasConceptScore W3189791978C12267149 @default.
- W3189791978 hasConceptScore W3189791978C139945424 @default.
- W3189791978 hasConceptScore W3189791978C154945302 @default.
- W3189791978 hasConceptScore W3189791978C194273485 @default.
- W3189791978 hasConceptScore W3189791978C199360897 @default.
- W3189791978 hasConceptScore W3189791978C2777735758 @default.
- W3189791978 hasConceptScore W3189791978C33923547 @default.
- W3189791978 hasConceptScore W3189791978C41008148 @default.
- W3189791978 hasConceptScore W3189791978C50644808 @default.
- W3189791978 hasConceptScore W3189791978C555944384 @default.
- W3189791978 hasConceptScore W3189791978C76155785 @default.
- W3189791978 hasFunder F4320324172 @default.
- W3189791978 hasLocation W31897919781 @default.
- W3189791978 hasOpenAccess W3189791978 @default.
- W3189791978 hasPrimaryLocation W31897919781 @default.
- W3189791978 hasRelatedWork W1971278352 @default.
- W3189791978 hasRelatedWork W1996541855 @default.
- W3189791978 hasRelatedWork W2037316683 @default.
- W3189791978 hasRelatedWork W2099878889 @default.
- W3189791978 hasRelatedWork W2355927362 @default.
- W3189791978 hasRelatedWork W2961085424 @default.
- W3189791978 hasRelatedWork W2995227436 @default.
- W3189791978 hasRelatedWork W3195168932 @default.
- W3189791978 hasRelatedWork W4306674287 @default.
- W3189791978 hasRelatedWork W4316658362 @default.
- W3189791978 hasVolume "2021" @default.
- W3189791978 isParatext "false" @default.
- W3189791978 isRetracted "false" @default.
- W3189791978 magId "3189791978" @default.
- W3189791978 workType "article" @default.