Matches in SemOpenAlex for { <https://semopenalex.org/work/W3189815970> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3189815970 abstract "In multivariate processes (e.g., mechanical, chemical process and power plant, etc.), because several systems are complexly connected and operated, equipment faults can lead to failure or malfunction of the entire process. To improve the safety and reliability of the process, there is a need for a fault detection technology capable of preventing an accident by detecting the fault of an object in advance. In this paper, we detect the faults in multivariate processes using auto-associative kernel regression(AAKR), which is mainly used to detect faults due to benefits applicable to multiple-mode processes. AAKR is a nonparametric multivariate method that compares the similarity between the training data stored in memory and the query vector (testing data), and then assigns high weights to the high similarity vectors to compute the estimated vector. However, since there is a problem that you need to set the proper bandwidth parameter of the weighting function to calculate the weight, it is very important to reduce the parameter uncertainty by properly adjusting the bandwidth parameter according to the properties and characteristics of the input data. The conventional methods for setting of bandwidth parameter is used by trial and error. This method takes a lot of time and computation power. In this paper, we set the proper bandwidth parameter of weighting function in AAKR algorithm using interval type-2 fuzzy logic system (IT2FLS) that can deal with uncertainty. Dataset simulated from a multivariate dynamic process model was used to experiments, and the fault data was generated by applying two types of disturbance (e.g., bias and drift) to the simulated data. Experimental results show that the proposed fault detection method has better performance than the conventional method for setting of bandwidth parameter." @default.
- W3189815970 created "2021-08-16" @default.
- W3189815970 creator A5004904498 @default.
- W3189815970 creator A5010443325 @default.
- W3189815970 creator A5047492763 @default.
- W3189815970 creator A5051869367 @default.
- W3189815970 date "2021-07-11" @default.
- W3189815970 modified "2023-10-02" @default.
- W3189815970 title "Fault Detection Method based on Auto-associative Kernel Regression and Interval Type-2 Fuzzy Logic System for Multivariate Process" @default.
- W3189815970 cites W1499842900 @default.
- W3189815970 cites W1972738875 @default.
- W3189815970 cites W1981240965 @default.
- W3189815970 cites W1983658296 @default.
- W3189815970 cites W2072405524 @default.
- W3189815970 cites W2077791644 @default.
- W3189815970 cites W2078443809 @default.
- W3189815970 cites W2105234323 @default.
- W3189815970 cites W2121398730 @default.
- W3189815970 cites W2141178894 @default.
- W3189815970 cites W2141741499 @default.
- W3189815970 cites W2150879558 @default.
- W3189815970 cites W2153926574 @default.
- W3189815970 cites W2156566922 @default.
- W3189815970 cites W2158094729 @default.
- W3189815970 cites W2162706466 @default.
- W3189815970 cites W2321074348 @default.
- W3189815970 cites W2503993098 @default.
- W3189815970 cites W2547617640 @default.
- W3189815970 cites W2573263450 @default.
- W3189815970 cites W2767160479 @default.
- W3189815970 cites W2807877804 @default.
- W3189815970 cites W4211007335 @default.
- W3189815970 cites W4235457221 @default.
- W3189815970 cites W4245152641 @default.
- W3189815970 doi "https://doi.org/10.1109/fuzz45933.2021.9494486" @default.
- W3189815970 hasPublicationYear "2021" @default.
- W3189815970 type Work @default.
- W3189815970 sameAs 3189815970 @default.
- W3189815970 citedByCount "2" @default.
- W3189815970 countsByYear W31898159702023 @default.
- W3189815970 crossrefType "proceedings-article" @default.
- W3189815970 hasAuthorship W3189815970A5004904498 @default.
- W3189815970 hasAuthorship W3189815970A5010443325 @default.
- W3189815970 hasAuthorship W3189815970A5047492763 @default.
- W3189815970 hasAuthorship W3189815970A5051869367 @default.
- W3189815970 hasConcept C11413529 @default.
- W3189815970 hasConcept C114614502 @default.
- W3189815970 hasConcept C119857082 @default.
- W3189815970 hasConcept C124101348 @default.
- W3189815970 hasConcept C126838900 @default.
- W3189815970 hasConcept C152745839 @default.
- W3189815970 hasConcept C154945302 @default.
- W3189815970 hasConcept C161584116 @default.
- W3189815970 hasConcept C172707124 @default.
- W3189815970 hasConcept C183115368 @default.
- W3189815970 hasConcept C33923547 @default.
- W3189815970 hasConcept C41008148 @default.
- W3189815970 hasConcept C58166 @default.
- W3189815970 hasConcept C71924100 @default.
- W3189815970 hasConcept C74193536 @default.
- W3189815970 hasConceptScore W3189815970C11413529 @default.
- W3189815970 hasConceptScore W3189815970C114614502 @default.
- W3189815970 hasConceptScore W3189815970C119857082 @default.
- W3189815970 hasConceptScore W3189815970C124101348 @default.
- W3189815970 hasConceptScore W3189815970C126838900 @default.
- W3189815970 hasConceptScore W3189815970C152745839 @default.
- W3189815970 hasConceptScore W3189815970C154945302 @default.
- W3189815970 hasConceptScore W3189815970C161584116 @default.
- W3189815970 hasConceptScore W3189815970C172707124 @default.
- W3189815970 hasConceptScore W3189815970C183115368 @default.
- W3189815970 hasConceptScore W3189815970C33923547 @default.
- W3189815970 hasConceptScore W3189815970C41008148 @default.
- W3189815970 hasConceptScore W3189815970C58166 @default.
- W3189815970 hasConceptScore W3189815970C71924100 @default.
- W3189815970 hasConceptScore W3189815970C74193536 @default.
- W3189815970 hasLocation W31898159701 @default.
- W3189815970 hasOpenAccess W3189815970 @default.
- W3189815970 hasPrimaryLocation W31898159701 @default.
- W3189815970 hasRelatedWork W1979928167 @default.
- W3189815970 hasRelatedWork W2071332742 @default.
- W3189815970 hasRelatedWork W2139960062 @default.
- W3189815970 hasRelatedWork W2347953833 @default.
- W3189815970 hasRelatedWork W2349790629 @default.
- W3189815970 hasRelatedWork W2350822442 @default.
- W3189815970 hasRelatedWork W2364718539 @default.
- W3189815970 hasRelatedWork W2377575454 @default.
- W3189815970 hasRelatedWork W2519422835 @default.
- W3189815970 hasRelatedWork W4381377121 @default.
- W3189815970 isParatext "false" @default.
- W3189815970 isRetracted "false" @default.
- W3189815970 magId "3189815970" @default.
- W3189815970 workType "article" @default.