Matches in SemOpenAlex for { <https://semopenalex.org/work/W3189883889> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3189883889 endingPage "02010" @default.
- W3189883889 startingPage "02010" @default.
- W3189883889 abstract "China is one of the countries in the world that seriously affected by flash floods disasters. The flash flood caused by extreme rainfall occurred at mountainous small-sized watersheds in China often leads to serious economic damages and obstructs the social development. Setting up an efficient forecasting system for flash flood has been widely accepted as one of the key non-structural measures to improve the control and prevention capability of China. However, due to the data limitation, establishing forecast models in those flash flood areas is challenged by the lack of parameter references. This paper proposed a new machine learning approach based on the Random Forest (RF) algorithm for model parameter regionalization. Integrated with distributed deterministic hydrological models of 20 small-sized watersheds in Henan province, the RF algorithm has been applied for defining the watersheds’ similarity and further transferring the parameters from sample watersheds to the objective watershed. Validated through leave-one-out approach, the RF model is able to effectively improve the simulation accuracy of flash floods in Henan province. The presented approach showed high-levelled applicability to be extended in other flash flood areas in China for providing effective reference for parameter regionalization." @default.
- W3189883889 created "2021-08-16" @default.
- W3189883889 creator A5001206420 @default.
- W3189883889 creator A5018041117 @default.
- W3189883889 creator A5030462367 @default.
- W3189883889 creator A5063052790 @default.
- W3189883889 creator A5074094490 @default.
- W3189883889 creator A5082088875 @default.
- W3189883889 creator A5091108961 @default.
- W3189883889 date "2021-01-01" @default.
- W3189883889 modified "2023-10-16" @default.
- W3189883889 title "A New Machine Learning Approach for parameter regionalization of Flash Flood Modelling in Henan Province, China" @default.
- W3189883889 cites W2079387008 @default.
- W3189883889 doi "https://doi.org/10.1051/e3sconf/202130002010" @default.
- W3189883889 hasPublicationYear "2021" @default.
- W3189883889 type Work @default.
- W3189883889 sameAs 3189883889 @default.
- W3189883889 citedByCount "2" @default.
- W3189883889 countsByYear W31898838892022 @default.
- W3189883889 countsByYear W31898838892023 @default.
- W3189883889 crossrefType "journal-article" @default.
- W3189883889 hasAuthorship W3189883889A5001206420 @default.
- W3189883889 hasAuthorship W3189883889A5018041117 @default.
- W3189883889 hasAuthorship W3189883889A5030462367 @default.
- W3189883889 hasAuthorship W3189883889A5063052790 @default.
- W3189883889 hasAuthorship W3189883889A5074094490 @default.
- W3189883889 hasAuthorship W3189883889A5082088875 @default.
- W3189883889 hasAuthorship W3189883889A5091108961 @default.
- W3189883889 hasBestOaLocation W31898838891 @default.
- W3189883889 hasConcept C119857082 @default.
- W3189883889 hasConcept C120417685 @default.
- W3189883889 hasConcept C142362112 @default.
- W3189883889 hasConcept C150547873 @default.
- W3189883889 hasConcept C153349607 @default.
- W3189883889 hasConcept C154945302 @default.
- W3189883889 hasConcept C166957645 @default.
- W3189883889 hasConcept C169258074 @default.
- W3189883889 hasConcept C17744445 @default.
- W3189883889 hasConcept C191935318 @default.
- W3189883889 hasConcept C199539241 @default.
- W3189883889 hasConcept C205649164 @default.
- W3189883889 hasConcept C2777381055 @default.
- W3189883889 hasConcept C2777526259 @default.
- W3189883889 hasConcept C39432304 @default.
- W3189883889 hasConcept C41008148 @default.
- W3189883889 hasConcept C539955404 @default.
- W3189883889 hasConcept C74256435 @default.
- W3189883889 hasConceptScore W3189883889C119857082 @default.
- W3189883889 hasConceptScore W3189883889C120417685 @default.
- W3189883889 hasConceptScore W3189883889C142362112 @default.
- W3189883889 hasConceptScore W3189883889C150547873 @default.
- W3189883889 hasConceptScore W3189883889C153349607 @default.
- W3189883889 hasConceptScore W3189883889C154945302 @default.
- W3189883889 hasConceptScore W3189883889C166957645 @default.
- W3189883889 hasConceptScore W3189883889C169258074 @default.
- W3189883889 hasConceptScore W3189883889C17744445 @default.
- W3189883889 hasConceptScore W3189883889C191935318 @default.
- W3189883889 hasConceptScore W3189883889C199539241 @default.
- W3189883889 hasConceptScore W3189883889C205649164 @default.
- W3189883889 hasConceptScore W3189883889C2777381055 @default.
- W3189883889 hasConceptScore W3189883889C2777526259 @default.
- W3189883889 hasConceptScore W3189883889C39432304 @default.
- W3189883889 hasConceptScore W3189883889C41008148 @default.
- W3189883889 hasConceptScore W3189883889C539955404 @default.
- W3189883889 hasConceptScore W3189883889C74256435 @default.
- W3189883889 hasLocation W31898838891 @default.
- W3189883889 hasLocation W31898838892 @default.
- W3189883889 hasOpenAccess W3189883889 @default.
- W3189883889 hasPrimaryLocation W31898838891 @default.
- W3189883889 hasRelatedWork W1586873268 @default.
- W3189883889 hasRelatedWork W2353273857 @default.
- W3189883889 hasRelatedWork W2610093266 @default.
- W3189883889 hasRelatedWork W2743259301 @default.
- W3189883889 hasRelatedWork W2941856406 @default.
- W3189883889 hasRelatedWork W2962078324 @default.
- W3189883889 hasRelatedWork W4285479169 @default.
- W3189883889 hasRelatedWork W4324057165 @default.
- W3189883889 hasRelatedWork W577687932 @default.
- W3189883889 hasRelatedWork W2183948063 @default.
- W3189883889 hasVolume "300" @default.
- W3189883889 isParatext "false" @default.
- W3189883889 isRetracted "false" @default.
- W3189883889 magId "3189883889" @default.
- W3189883889 workType "article" @default.