Matches in SemOpenAlex for { <https://semopenalex.org/work/W3190028212> ?p ?o ?g. }
- W3190028212 abstract "Abstract Background The evaluation of the automatic segmentation algorithms is commonly performed using geometric metrics, yet an evaluation based on dosimetric parameters might be more relevant in clinical practice but is still lacking in the literature. The aim of this study was to investigate the impact of state-of-the-art 3D U-Net-generated organ delineations on dose optimization in intensity-modulated radiation therapy (IMRT) for prostate patients for the first time. Methods A database of 69 computed tomography (CT) images with prostate, bladder, and rectum delineations was used for single-label 3D U-Net training with dice similarity coefficient (DSC)-based loss. Volumetric modulated arc therapy (VMAT) plans have been generated for both manual and automatic segmentations with the same optimization settings. These were chosen to give consistent plans when applying perturbations to the manual segmentations. Contours were evaluated in terms of DSC, average and 95% Hausdorff distance (HD). Dose distributions were evaluated with the manual segmentation as reference using dose volume histogram (DVH) parameters and a 3%/3mm gamma-criterion with 10% dose cut-off. A Pearson correlation coefficient between DSC and dosimetric metrics, gamma index and DVH parameters, has been calculated. Results 3D U-Net based segmentation achieved a DSC of 0.87(0.03) for prostate, 0.97(0.01) for bladder and 0.89(0.04) for rectum. The mean and 95% HD were below 1.6(0.4) and below 5(4) mm, respectively. The DVH parameters V 60/65/70 Gy for the bladder and V 50/65/70 Gy for the rectum showed agreement between dose distributions within ±5% and ±2%, respectively. The DVH parameters for prostate and prostate+3mm margin (surrogate clinical target volume) showed good target coverage for the 3D U-Net segmentation with the exception of one case. The average gamma pass-rate was 85%. A comparison between geometric and dosimetric metrics showed no strong statistically significant correlation between these metrics. Conclusions The 3D U-Net developed for this work achieved state-of-the-art geometrical performance. The study highlighted the importance of dosimetric evaluation on top of standard geometric parameters and concluded that the automatic segmentation is sufficiently accurate to assist the physicians in manually contouring organs in CT images of the male pelvic region, which is an important step towards a fully automated workflow in IMRT." @default.
- W3190028212 created "2021-08-16" @default.
- W3190028212 creator A5000377815 @default.
- W3190028212 creator A5012670084 @default.
- W3190028212 creator A5031842791 @default.
- W3190028212 creator A5038323479 @default.
- W3190028212 creator A5049637504 @default.
- W3190028212 creator A5051295664 @default.
- W3190028212 creator A5074507143 @default.
- W3190028212 creator A5083814756 @default.
- W3190028212 creator A5089792965 @default.
- W3190028212 date "2021-08-02" @default.
- W3190028212 modified "2023-09-25" @default.
- W3190028212 title "Dosimetric Impact of Deep Learning-Based CT Auto-Segmentation on IMRT Treatment Planning for Prostate Cancer" @default.
- W3190028212 cites W1570906106 @default.
- W3190028212 cites W1869279837 @default.
- W3190028212 cites W1909740415 @default.
- W3190028212 cites W1978444272 @default.
- W3190028212 cites W2046701188 @default.
- W3190028212 cites W2106971583 @default.
- W3190028212 cites W2158980875 @default.
- W3190028212 cites W2160872477 @default.
- W3190028212 cites W2183101157 @default.
- W3190028212 cites W2325870851 @default.
- W3190028212 cites W2805205462 @default.
- W3190028212 cites W2919115771 @default.
- W3190028212 cites W2923425487 @default.
- W3190028212 cites W2962914239 @default.
- W3190028212 cites W2986021933 @default.
- W3190028212 cites W3027849539 @default.
- W3190028212 cites W3092941474 @default.
- W3190028212 cites W3104748270 @default.
- W3190028212 cites W3131910870 @default.
- W3190028212 doi "https://doi.org/10.21203/rs.3.rs-718965/v1" @default.
- W3190028212 hasPublicationYear "2021" @default.
- W3190028212 type Work @default.
- W3190028212 sameAs 3190028212 @default.
- W3190028212 citedByCount "0" @default.
- W3190028212 crossrefType "posted-content" @default.
- W3190028212 hasAuthorship W3190028212A5000377815 @default.
- W3190028212 hasAuthorship W3190028212A5012670084 @default.
- W3190028212 hasAuthorship W3190028212A5031842791 @default.
- W3190028212 hasAuthorship W3190028212A5038323479 @default.
- W3190028212 hasAuthorship W3190028212A5049637504 @default.
- W3190028212 hasAuthorship W3190028212A5051295664 @default.
- W3190028212 hasAuthorship W3190028212A5074507143 @default.
- W3190028212 hasAuthorship W3190028212A5083814756 @default.
- W3190028212 hasAuthorship W3190028212A5089792965 @default.
- W3190028212 hasBestOaLocation W31900282121 @default.
- W3190028212 hasConcept C115961682 @default.
- W3190028212 hasConcept C121608353 @default.
- W3190028212 hasConcept C121684516 @default.
- W3190028212 hasConcept C126322002 @default.
- W3190028212 hasConcept C126838900 @default.
- W3190028212 hasConcept C141071460 @default.
- W3190028212 hasConcept C141898687 @default.
- W3190028212 hasConcept C154945302 @default.
- W3190028212 hasConcept C201645570 @default.
- W3190028212 hasConcept C2776235491 @default.
- W3190028212 hasConcept C2779104521 @default.
- W3190028212 hasConcept C2780192828 @default.
- W3190028212 hasConcept C2780198649 @default.
- W3190028212 hasConcept C2781074409 @default.
- W3190028212 hasConcept C2989005 @default.
- W3190028212 hasConcept C33923547 @default.
- W3190028212 hasConcept C41008148 @default.
- W3190028212 hasConcept C509974204 @default.
- W3190028212 hasConcept C53533937 @default.
- W3190028212 hasConcept C71924100 @default.
- W3190028212 hasConcept C89600930 @default.
- W3190028212 hasConceptScore W3190028212C115961682 @default.
- W3190028212 hasConceptScore W3190028212C121608353 @default.
- W3190028212 hasConceptScore W3190028212C121684516 @default.
- W3190028212 hasConceptScore W3190028212C126322002 @default.
- W3190028212 hasConceptScore W3190028212C126838900 @default.
- W3190028212 hasConceptScore W3190028212C141071460 @default.
- W3190028212 hasConceptScore W3190028212C141898687 @default.
- W3190028212 hasConceptScore W3190028212C154945302 @default.
- W3190028212 hasConceptScore W3190028212C201645570 @default.
- W3190028212 hasConceptScore W3190028212C2776235491 @default.
- W3190028212 hasConceptScore W3190028212C2779104521 @default.
- W3190028212 hasConceptScore W3190028212C2780192828 @default.
- W3190028212 hasConceptScore W3190028212C2780198649 @default.
- W3190028212 hasConceptScore W3190028212C2781074409 @default.
- W3190028212 hasConceptScore W3190028212C2989005 @default.
- W3190028212 hasConceptScore W3190028212C33923547 @default.
- W3190028212 hasConceptScore W3190028212C41008148 @default.
- W3190028212 hasConceptScore W3190028212C509974204 @default.
- W3190028212 hasConceptScore W3190028212C53533937 @default.
- W3190028212 hasConceptScore W3190028212C71924100 @default.
- W3190028212 hasConceptScore W3190028212C89600930 @default.
- W3190028212 hasLocation W31900282121 @default.
- W3190028212 hasOpenAccess W3190028212 @default.
- W3190028212 hasPrimaryLocation W31900282121 @default.
- W3190028212 hasRelatedWork W1965767437 @default.
- W3190028212 hasRelatedWork W1987445093 @default.
- W3190028212 hasRelatedWork W2049593891 @default.
- W3190028212 hasRelatedWork W2057960324 @default.
- W3190028212 hasRelatedWork W2071219245 @default.
- W3190028212 hasRelatedWork W2072225115 @default.