Matches in SemOpenAlex for { <https://semopenalex.org/work/W3190028216> ?p ?o ?g. }
- W3190028216 endingPage "107580" @default.
- W3190028216 startingPage "107580" @default.
- W3190028216 abstract "Root cause analysis for quality problem solving is critical to improve product quality performance and reduce the quality risk for manufacturers. Subjective conventional methods have been applied frequently in past decades. However, due to increasingly complex product and supply chain structures, diverse working conditions, and massive amounts of components, accuracy and efficiency of root cause analysis are progressively challenged in practice. Therefore, data-driven root cause analysis methods have attracted attention lately. In this paper, taking advantage of the availability of big operations data and the rapid development of data science, we design a big data-driven root cause analysis system utilizing Machine Learning techniques to improve the performance of root cause analysis. More specifically, we first propose a conceptual framework of the big data-driven root cause analysis system including three modules of Problem Identification, Root Cause Identification, and Permanent Corrective Action. Furthermore, in the Problem Identification Module, we construct a unified feature-based approach to describe multiple and different types of quality problems by applying a data mining method. In the Root Cause Identification Module, we use supervised Machine Learning (classification) methods to automatically predict the root causes of multiple quality problems. Finally, we illustrate the accuracy and efficiency of the proposed system and algorithms based on actual quality data from a case company. This study contributes to the literature from the following aspects: (i) the integrated system and algorithms can be used directly to develop a computer application to manage and solve quality problems with high concurrences and complexities in any manufacturing process; (ii) a general procedure and method are provided to formulate and describe a large quantity and different types of quality problems; (iii) compared with traditional methods, it is demonstrated using real case data that manufacturing companies can save significant time and cost with our proposed data-driven root cause analysis system; (iv) this study not only aims at improving the quality problem solving practices for a complex manufacturing process but also bridges a gap between the theoretical development of Machining Learning methods and their application in the operations management domain." @default.
- W3190028216 created "2021-08-16" @default.
- W3190028216 creator A5071524765 @default.
- W3190028216 creator A5086445887 @default.
- W3190028216 creator A5090706068 @default.
- W3190028216 date "2021-10-01" @default.
- W3190028216 modified "2023-10-02" @default.
- W3190028216 title "A big data-driven root cause analysis system: Application of Machine Learning in quality problem solving" @default.
- W3190028216 cites W1980628638 @default.
- W3190028216 cites W2035134571 @default.
- W3190028216 cites W2051532472 @default.
- W3190028216 cites W2053143554 @default.
- W3190028216 cites W2118020653 @default.
- W3190028216 cites W2125247163 @default.
- W3190028216 cites W2134732423 @default.
- W3190028216 cites W2142165581 @default.
- W3190028216 cites W2158698691 @default.
- W3190028216 cites W2170505850 @default.
- W3190028216 cites W2191365824 @default.
- W3190028216 cites W2258576229 @default.
- W3190028216 cites W2321278764 @default.
- W3190028216 cites W2323478847 @default.
- W3190028216 cites W2402040300 @default.
- W3190028216 cites W2613359266 @default.
- W3190028216 cites W2613686321 @default.
- W3190028216 cites W2713360369 @default.
- W3190028216 cites W2728975105 @default.
- W3190028216 cites W2773275559 @default.
- W3190028216 cites W2810140125 @default.
- W3190028216 cites W2890477049 @default.
- W3190028216 cites W2891370463 @default.
- W3190028216 cites W2912133196 @default.
- W3190028216 cites W2953575192 @default.
- W3190028216 cites W3005790807 @default.
- W3190028216 doi "https://doi.org/10.1016/j.cie.2021.107580" @default.
- W3190028216 hasPublicationYear "2021" @default.
- W3190028216 type Work @default.
- W3190028216 sameAs 3190028216 @default.
- W3190028216 citedByCount "13" @default.
- W3190028216 countsByYear W31900282162022 @default.
- W3190028216 countsByYear W31900282162023 @default.
- W3190028216 crossrefType "journal-article" @default.
- W3190028216 hasAuthorship W3190028216A5071524765 @default.
- W3190028216 hasAuthorship W3190028216A5086445887 @default.
- W3190028216 hasAuthorship W3190028216A5090706068 @default.
- W3190028216 hasConcept C111472728 @default.
- W3190028216 hasConcept C116834253 @default.
- W3190028216 hasConcept C119857082 @default.
- W3190028216 hasConcept C124101348 @default.
- W3190028216 hasConcept C127413603 @default.
- W3190028216 hasConcept C130963320 @default.
- W3190028216 hasConcept C138885662 @default.
- W3190028216 hasConcept C154945302 @default.
- W3190028216 hasConcept C171078966 @default.
- W3190028216 hasConcept C199360897 @default.
- W3190028216 hasConcept C200601418 @default.
- W3190028216 hasConcept C2779530757 @default.
- W3190028216 hasConcept C2780801425 @default.
- W3190028216 hasConcept C41008148 @default.
- W3190028216 hasConcept C41895202 @default.
- W3190028216 hasConcept C59822182 @default.
- W3190028216 hasConcept C75684735 @default.
- W3190028216 hasConcept C84945661 @default.
- W3190028216 hasConcept C86803240 @default.
- W3190028216 hasConceptScore W3190028216C111472728 @default.
- W3190028216 hasConceptScore W3190028216C116834253 @default.
- W3190028216 hasConceptScore W3190028216C119857082 @default.
- W3190028216 hasConceptScore W3190028216C124101348 @default.
- W3190028216 hasConceptScore W3190028216C127413603 @default.
- W3190028216 hasConceptScore W3190028216C130963320 @default.
- W3190028216 hasConceptScore W3190028216C138885662 @default.
- W3190028216 hasConceptScore W3190028216C154945302 @default.
- W3190028216 hasConceptScore W3190028216C171078966 @default.
- W3190028216 hasConceptScore W3190028216C199360897 @default.
- W3190028216 hasConceptScore W3190028216C200601418 @default.
- W3190028216 hasConceptScore W3190028216C2779530757 @default.
- W3190028216 hasConceptScore W3190028216C2780801425 @default.
- W3190028216 hasConceptScore W3190028216C41008148 @default.
- W3190028216 hasConceptScore W3190028216C41895202 @default.
- W3190028216 hasConceptScore W3190028216C59822182 @default.
- W3190028216 hasConceptScore W3190028216C75684735 @default.
- W3190028216 hasConceptScore W3190028216C84945661 @default.
- W3190028216 hasConceptScore W3190028216C86803240 @default.
- W3190028216 hasLocation W31900282161 @default.
- W3190028216 hasOpenAccess W3190028216 @default.
- W3190028216 hasPrimaryLocation W31900282161 @default.
- W3190028216 hasRelatedWork W2030594396 @default.
- W3190028216 hasRelatedWork W2056250485 @default.
- W3190028216 hasRelatedWork W2202104725 @default.
- W3190028216 hasRelatedWork W2535098331 @default.
- W3190028216 hasRelatedWork W3045668461 @default.
- W3190028216 hasRelatedWork W4255366506 @default.
- W3190028216 hasRelatedWork W4309130551 @default.
- W3190028216 hasRelatedWork W4321505428 @default.
- W3190028216 hasRelatedWork W167622659 @default.
- W3190028216 hasRelatedWork W2885334669 @default.
- W3190028216 hasVolume "160" @default.
- W3190028216 isParatext "false" @default.