Matches in SemOpenAlex for { <https://semopenalex.org/work/W3190254845> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3190254845 abstract "Deep learning is a potential approach to automatically develop kinetic models from experimental data. We propose a deep neural network model of KiNet to represent chemical kinetics. KiNet takes the current composition states and predicts the evolution of the states after a fixed time step. The long-period evolution of the states and their gradients to model parameters can be efficiently obtained by recursively applying the KiNet model multiple times. To address the challenges of the high-dimensional composition space and error accumulation in long-period prediction, the architecture of KiNet incorporates the residual network model (ResNet), and the training employs backpropagation through time (BPTT) approach to minimize multi-step prediction error. In addition, an approach for efficiently computing the gradient of the ignition delay time (IDT) to KiNet model parameters is proposed to train the KiNet against the rich database of IDT from literature, which could address the scarcity of time-resolved species measurements. The KiNet is first trained and compared with the simulated species profiles during the auto-ignition of H2/air mixtures. The obtained KiNet model can accurately predict the auto-ignition processes for various initial conditions that cover a wide range of pressures, temperatures, and equivalence ratios. Then, we show that the gradient of IDT to KiNet model parameters is parallel to the gradient of the temperature at the ignition point. This correlation enables efficient computation of the gradient of IDT via backpropagation and is demonstrated as a feasible approach for fine-tuning the KiNet against IDT. These demonstrations shall open up the possibility of building data-driven kinetic models autonomously. Finally, the trained KiNet could be potentially applied to kinetic model reduction and chemistry acceleration in turbulent combustion simulations." @default.
- W3190254845 created "2021-08-16" @default.
- W3190254845 creator A5043537937 @default.
- W3190254845 creator A5065718414 @default.
- W3190254845 date "2021-08-01" @default.
- W3190254845 modified "2023-09-23" @default.
- W3190254845 title "KiNet: A Deep Neural Network Representation of Chemical Kinetics." @default.
- W3190254845 cites W1522301498 @default.
- W3190254845 cites W2026828950 @default.
- W3190254845 cites W2029332330 @default.
- W3190254845 cites W2036470899 @default.
- W3190254845 cites W2038013704 @default.
- W3190254845 cites W2041837258 @default.
- W3190254845 cites W2054830476 @default.
- W3190254845 cites W2059103386 @default.
- W3190254845 cites W2070231720 @default.
- W3190254845 cites W2104766360 @default.
- W3190254845 cites W2148058722 @default.
- W3190254845 cites W2150355110 @default.
- W3190254845 cites W2152069856 @default.
- W3190254845 cites W2194775991 @default.
- W3190254845 cites W2268617045 @default.
- W3190254845 cites W2740711119 @default.
- W3190254845 cites W2765872171 @default.
- W3190254845 cites W2808938011 @default.
- W3190254845 cites W2884318381 @default.
- W3190254845 cites W2899771611 @default.
- W3190254845 cites W2902809050 @default.
- W3190254845 cites W2906362494 @default.
- W3190254845 cites W2919115771 @default.
- W3190254845 cites W2940300307 @default.
- W3190254845 cites W2951629468 @default.
- W3190254845 cites W2963755523 @default.
- W3190254845 cites W2970748133 @default.
- W3190254845 cites W3099648079 @default.
- W3190254845 cites W3209678193 @default.
- W3190254845 hasPublicationYear "2021" @default.
- W3190254845 type Work @default.
- W3190254845 sameAs 3190254845 @default.
- W3190254845 citedByCount "0" @default.
- W3190254845 crossrefType "posted-content" @default.
- W3190254845 hasAuthorship W3190254845A5043537937 @default.
- W3190254845 hasAuthorship W3190254845A5065718414 @default.
- W3190254845 hasConcept C11413529 @default.
- W3190254845 hasConcept C154945302 @default.
- W3190254845 hasConcept C155032097 @default.
- W3190254845 hasConcept C155512373 @default.
- W3190254845 hasConcept C159985019 @default.
- W3190254845 hasConcept C186060115 @default.
- W3190254845 hasConcept C192562407 @default.
- W3190254845 hasConcept C204323151 @default.
- W3190254845 hasConcept C41008148 @default.
- W3190254845 hasConcept C45374587 @default.
- W3190254845 hasConcept C50644808 @default.
- W3190254845 hasConcept C86803240 @default.
- W3190254845 hasConceptScore W3190254845C11413529 @default.
- W3190254845 hasConceptScore W3190254845C154945302 @default.
- W3190254845 hasConceptScore W3190254845C155032097 @default.
- W3190254845 hasConceptScore W3190254845C155512373 @default.
- W3190254845 hasConceptScore W3190254845C159985019 @default.
- W3190254845 hasConceptScore W3190254845C186060115 @default.
- W3190254845 hasConceptScore W3190254845C192562407 @default.
- W3190254845 hasConceptScore W3190254845C204323151 @default.
- W3190254845 hasConceptScore W3190254845C41008148 @default.
- W3190254845 hasConceptScore W3190254845C45374587 @default.
- W3190254845 hasConceptScore W3190254845C50644808 @default.
- W3190254845 hasConceptScore W3190254845C86803240 @default.
- W3190254845 hasLocation W31902548451 @default.
- W3190254845 hasOpenAccess W3190254845 @default.
- W3190254845 hasPrimaryLocation W31902548451 @default.
- W3190254845 hasRelatedWork W2019259558 @default.
- W3190254845 hasRelatedWork W2020321990 @default.
- W3190254845 hasRelatedWork W2030079724 @default.
- W3190254845 hasRelatedWork W2148627992 @default.
- W3190254845 hasRelatedWork W2186328966 @default.
- W3190254845 hasRelatedWork W2313168708 @default.
- W3190254845 hasRelatedWork W2325298497 @default.
- W3190254845 hasRelatedWork W2890074485 @default.
- W3190254845 hasRelatedWork W2944795367 @default.
- W3190254845 hasRelatedWork W2977992705 @default.
- W3190254845 hasRelatedWork W3025930548 @default.
- W3190254845 hasRelatedWork W3165155048 @default.
- W3190254845 hasRelatedWork W3178290420 @default.
- W3190254845 isParatext "false" @default.
- W3190254845 isRetracted "false" @default.
- W3190254845 magId "3190254845" @default.
- W3190254845 workType "article" @default.