Matches in SemOpenAlex for { <https://semopenalex.org/work/W3190256536> ?p ?o ?g. }
- W3190256536 endingPage "100186" @default.
- W3190256536 startingPage "100186" @default.
- W3190256536 abstract "Intentionally blocking the path of fully automated vehicles is an important dimension of pedestrians’ receptivity towards these vehicles. The monetary value of this behaviour can be obtained by asking pedestrians about their perception of the “fine” for blocking the path of a fully automated vehicle. Econometric modelling of the reported fine can shed more light on factors influencing pedestrians’ receptivity towards fully automated vehicles. However, development of such an econometric model is not straightforward due to the unique characteristics of the dependent variable: it has two fundamentally different states; it is right-truncated; and it may be fat-tailed. Despite fairly extensive methodological advancements in econometric modelling of pedestrian behaviour, there is no model that can adequately explain these characteristics. While a beta distribution in a hurdle setting has the potential to address the above complexities, its applicability in dealing with limited dependent variables in transport applications has remained, by and large, unexplored. This study aims to fill this gap by developing a new beta hurdle regression model that systematically considers the dual-state of a right-truncated dependent variable representing the fine associated with intentionally blocking a fully automated vehicle. The hypothesized model is empirically tested using data obtained from a survey administered in Queensland, Australia, and the results are compared with truncated lognormal, and truncated lognormal hurdle regression models. Results indicate that the hurdle models are superior to the non-hurdle model. The beta variant of the hurdle model provides a better statistical fit for the data that are near their right limit. In addition, parametrizing the variance of the beta distribution captures the additional heterogeneity in the data. Age, gender, education level, violations, attitudes, behaviours that appease social interactions, and perceived ease or difficulty of interacting with fully automated vehicles influence the likelihood and/or the propensity of the fine and thus are associated with the perceived monetary value of intentionally blocking the path of a fully automated vehicle." @default.
- W3190256536 created "2021-08-16" @default.
- W3190256536 creator A5015773152 @default.
- W3190256536 creator A5016640523 @default.
- W3190256536 creator A5020667372 @default.
- W3190256536 creator A5062060515 @default.
- W3190256536 creator A5068967962 @default.
- W3190256536 date "2021-12-01" @default.
- W3190256536 modified "2023-10-06" @default.
- W3190256536 title "How much should a pedestrian be fined for intentionally blocking a fully automated vehicle? A random parameters beta hurdle model with heterogeneity in the variance of the beta distribution" @default.
- W3190256536 cites W1485615221 @default.
- W3190256536 cites W1606493927 @default.
- W3190256536 cites W1979037819 @default.
- W3190256536 cites W1979288019 @default.
- W3190256536 cites W1985926185 @default.
- W3190256536 cites W1994695873 @default.
- W3190256536 cites W1996342609 @default.
- W3190256536 cites W2006677699 @default.
- W3190256536 cites W2023131190 @default.
- W3190256536 cites W2041638842 @default.
- W3190256536 cites W2043573899 @default.
- W3190256536 cites W2054217578 @default.
- W3190256536 cites W2060817938 @default.
- W3190256536 cites W2068852650 @default.
- W3190256536 cites W2092259073 @default.
- W3190256536 cites W2099697766 @default.
- W3190256536 cites W2125027820 @default.
- W3190256536 cites W2132342566 @default.
- W3190256536 cites W2132422289 @default.
- W3190256536 cites W2155206123 @default.
- W3190256536 cites W2166513720 @default.
- W3190256536 cites W2167832071 @default.
- W3190256536 cites W2287151480 @default.
- W3190256536 cites W2314787281 @default.
- W3190256536 cites W2346263386 @default.
- W3190256536 cites W2431835681 @default.
- W3190256536 cites W2509019102 @default.
- W3190256536 cites W2542192499 @default.
- W3190256536 cites W2553586445 @default.
- W3190256536 cites W2591962503 @default.
- W3190256536 cites W2625446628 @default.
- W3190256536 cites W2751103733 @default.
- W3190256536 cites W2761982724 @default.
- W3190256536 cites W2765174074 @default.
- W3190256536 cites W2794280587 @default.
- W3190256536 cites W2795740402 @default.
- W3190256536 cites W2796352901 @default.
- W3190256536 cites W2811054641 @default.
- W3190256536 cites W2885381360 @default.
- W3190256536 cites W2921425558 @default.
- W3190256536 cites W2945342930 @default.
- W3190256536 cites W2945563024 @default.
- W3190256536 cites W2949446683 @default.
- W3190256536 cites W2961119510 @default.
- W3190256536 cites W2963722898 @default.
- W3190256536 cites W2967819339 @default.
- W3190256536 cites W2970803237 @default.
- W3190256536 cites W3003317663 @default.
- W3190256536 cites W3003399723 @default.
- W3190256536 cites W3004423606 @default.
- W3190256536 cites W3005960992 @default.
- W3190256536 cites W3081762154 @default.
- W3190256536 cites W3084110618 @default.
- W3190256536 cites W3125976894 @default.
- W3190256536 cites W3127630296 @default.
- W3190256536 cites W3139173345 @default.
- W3190256536 cites W3194029761 @default.
- W3190256536 cites W3204031959 @default.
- W3190256536 doi "https://doi.org/10.1016/j.amar.2021.100186" @default.
- W3190256536 hasPublicationYear "2021" @default.
- W3190256536 type Work @default.
- W3190256536 sameAs 3190256536 @default.
- W3190256536 citedByCount "4" @default.
- W3190256536 countsByYear W31902565362021 @default.
- W3190256536 countsByYear W31902565362022 @default.
- W3190256536 countsByYear W31902565362023 @default.
- W3190256536 crossrefType "journal-article" @default.
- W3190256536 hasAuthorship W3190256536A5015773152 @default.
- W3190256536 hasAuthorship W3190256536A5016640523 @default.
- W3190256536 hasAuthorship W3190256536A5020667372 @default.
- W3190256536 hasAuthorship W3190256536A5062060515 @default.
- W3190256536 hasAuthorship W3190256536A5068967962 @default.
- W3190256536 hasBestOaLocation W31902565361 @default.
- W3190256536 hasConcept C105795698 @default.
- W3190256536 hasConcept C121955636 @default.
- W3190256536 hasConcept C127413603 @default.
- W3190256536 hasConcept C134306372 @default.
- W3190256536 hasConcept C144745244 @default.
- W3190256536 hasConcept C149782125 @default.
- W3190256536 hasConcept C151620405 @default.
- W3190256536 hasConcept C152877465 @default.
- W3190256536 hasConcept C162324750 @default.
- W3190256536 hasConcept C180075932 @default.
- W3190256536 hasConcept C182365436 @default.
- W3190256536 hasConcept C196083921 @default.
- W3190256536 hasConcept C202444582 @default.
- W3190256536 hasConcept C22212356 @default.
- W3190256536 hasConcept C27574286 @default.