Matches in SemOpenAlex for { <https://semopenalex.org/work/W3190270091> ?p ?o ?g. }
- W3190270091 endingPage "42" @default.
- W3190270091 startingPage "18" @default.
- W3190270091 abstract "Purpose Limitations encountered with the models developed in the previous studies had occurrences of global minima; due to which this study developed a new intelligent ubiquitous computational model that learns with gradient descent learning rule and operates with auto-encoders and decoders to attain better energy optimization. Ubiquitous machine learning computational model process performs training in a better way than regular supervised learning or unsupervised learning computational models with deep learning techniques, resulting in better learning and optimization for the considered problem domain of cloud-based internet-of-things (IOTs). This study aims to improve the network quality and improve the data accuracy rate during the network transmission process using the developed ubiquitous deep learning computational model. Design/methodology/approach In this research study, a novel intelligent ubiquitous machine learning computational model is designed and modelled to maintain the optimal energy level of cloud IOTs in sensor network domains. A new intelligent ubiquitous computational model that learns with gradient descent learning rule and operates with auto-encoders and decoders to attain better energy optimization is developed. A new unified deterministic sine-cosine algorithm has been developed in this study for parameter optimization of weight factors in the ubiquitous machine learning model. Findings The newly developed ubiquitous model is used for finding network energy and performing its optimization in the considered sensor network model. At the time of progressive simulation, residual energy, network overhead, end-to-end delay, network lifetime and a number of live nodes are evaluated. It is elucidated from the results attained, that the ubiquitous deep learning model resulted in better metrics based on its appropriate cluster selection and minimized route selection mechanism. Research limitations/implications In this research study, a novel ubiquitous computing model derived from a new optimization algorithm called a unified deterministic sine-cosine algorithm and deep learning technique was derived and applied for maintaining the optimal energy level of cloud IOTs in sensor networks. The deterministic levy flight concept is applied for developing the new optimization technique and this tends to determine the parametric weight values for the deep learning model. The ubiquitous deep learning model is designed with auto-encoders and decoders and their corresponding layers weights are determined for optimal values with the optimization algorithm. The modelled ubiquitous deep learning approach was applied in this study to determine the network energy consumption rate and thereby optimize the energy level by increasing the lifetime of the sensor network model considered. For all the considered network metrics, the ubiquitous computing model has proved to be effective and versatile than previous approaches from early research studies. Practical implications The developed ubiquitous computing model with deep learning techniques can be applied for any type of cloud-assisted IOTs in respect of wireless sensor networks, ad hoc networks, radio access technology networks, heterogeneous networks, etc. Practically, the developed model facilitates computing the optimal energy level of the cloud IOTs for any considered network models and this helps in maintaining a better network lifetime and reducing the end-to-end delay of the networks. Social implications The social implication of the proposed research study is that it helps in reducing energy consumption and increases the network lifetime of the cloud IOT based sensor network models. This approach helps the people in large to have a better transmission rate with minimized energy consumption and also reduces the delay in transmission. Originality/value In this research study, the network optimization of cloud-assisted IOTs of sensor network models is modelled and analysed using machine learning models as a kind of ubiquitous computing system. Ubiquitous computing models with machine learning techniques develop intelligent systems and enhances the users to make better and faster decisions. In the communication domain, the use of predictive and optimization models created with machine learning accelerates new ways to determine solutions to problems. Considering the importance of learning techniques, the ubiquitous computing model is designed based on a deep learning strategy and the learning mechanism adapts itself to attain a better network optimization model." @default.
- W3190270091 created "2021-08-16" @default.
- W3190270091 creator A5038617538 @default.
- W3190270091 date "2021-08-10" @default.
- W3190270091 modified "2023-10-11" @default.
- W3190270091 title "Intelligent ubiquitous computing model for energy optimization of cloud IOTs in sensor networks" @default.
- W3190270091 cites W2027421944 @default.
- W3190270091 cites W2057062806 @default.
- W3190270091 cites W2061879708 @default.
- W3190270091 cites W2076063813 @default.
- W3190270091 cites W2117278106 @default.
- W3190270091 cites W2193907340 @default.
- W3190270091 cites W2232317135 @default.
- W3190270091 cites W2405247369 @default.
- W3190270091 cites W2555316170 @default.
- W3190270091 cites W2561271453 @default.
- W3190270091 cites W2593744649 @default.
- W3190270091 cites W2746076170 @default.
- W3190270091 cites W2761388352 @default.
- W3190270091 cites W2790106051 @default.
- W3190270091 cites W2792244305 @default.
- W3190270091 cites W2798878556 @default.
- W3190270091 cites W2892466769 @default.
- W3190270091 cites W2901659646 @default.
- W3190270091 cites W2912292549 @default.
- W3190270091 cites W2912529044 @default.
- W3190270091 cites W2943021608 @default.
- W3190270091 cites W2972008586 @default.
- W3190270091 cites W3003843517 @default.
- W3190270091 cites W3010542023 @default.
- W3190270091 cites W3017158311 @default.
- W3190270091 cites W3024436929 @default.
- W3190270091 cites W3039684385 @default.
- W3190270091 cites W3047078447 @default.
- W3190270091 cites W3084720100 @default.
- W3190270091 cites W3087559954 @default.
- W3190270091 cites W3097472721 @default.
- W3190270091 cites W3111518078 @default.
- W3190270091 cites W3112253420 @default.
- W3190270091 cites W3117964364 @default.
- W3190270091 doi "https://doi.org/10.1108/ijpcc-02-2021-0037" @default.
- W3190270091 hasPublicationYear "2021" @default.
- W3190270091 type Work @default.
- W3190270091 sameAs 3190270091 @default.
- W3190270091 citedByCount "1" @default.
- W3190270091 countsByYear W31902700912022 @default.
- W3190270091 crossrefType "journal-article" @default.
- W3190270091 hasAuthorship W3190270091A5038617538 @default.
- W3190270091 hasConcept C108583219 @default.
- W3190270091 hasConcept C111919701 @default.
- W3190270091 hasConcept C11413529 @default.
- W3190270091 hasConcept C115903097 @default.
- W3190270091 hasConcept C119857082 @default.
- W3190270091 hasConcept C137836250 @default.
- W3190270091 hasConcept C154945302 @default.
- W3190270091 hasConcept C18903297 @default.
- W3190270091 hasConcept C206688291 @default.
- W3190270091 hasConcept C24590314 @default.
- W3190270091 hasConcept C2780165032 @default.
- W3190270091 hasConcept C31258907 @default.
- W3190270091 hasConcept C41008148 @default.
- W3190270091 hasConcept C50644808 @default.
- W3190270091 hasConcept C79974875 @default.
- W3190270091 hasConcept C86803240 @default.
- W3190270091 hasConceptScore W3190270091C108583219 @default.
- W3190270091 hasConceptScore W3190270091C111919701 @default.
- W3190270091 hasConceptScore W3190270091C11413529 @default.
- W3190270091 hasConceptScore W3190270091C115903097 @default.
- W3190270091 hasConceptScore W3190270091C119857082 @default.
- W3190270091 hasConceptScore W3190270091C137836250 @default.
- W3190270091 hasConceptScore W3190270091C154945302 @default.
- W3190270091 hasConceptScore W3190270091C18903297 @default.
- W3190270091 hasConceptScore W3190270091C206688291 @default.
- W3190270091 hasConceptScore W3190270091C24590314 @default.
- W3190270091 hasConceptScore W3190270091C2780165032 @default.
- W3190270091 hasConceptScore W3190270091C31258907 @default.
- W3190270091 hasConceptScore W3190270091C41008148 @default.
- W3190270091 hasConceptScore W3190270091C50644808 @default.
- W3190270091 hasConceptScore W3190270091C79974875 @default.
- W3190270091 hasConceptScore W3190270091C86803240 @default.
- W3190270091 hasIssue "1" @default.
- W3190270091 hasLocation W31902700911 @default.
- W3190270091 hasOpenAccess W3190270091 @default.
- W3190270091 hasPrimaryLocation W31902700911 @default.
- W3190270091 hasRelatedWork W1510116864 @default.
- W3190270091 hasRelatedWork W2111773953 @default.
- W3190270091 hasRelatedWork W2118190631 @default.
- W3190270091 hasRelatedWork W2165651264 @default.
- W3190270091 hasRelatedWork W2759783799 @default.
- W3190270091 hasRelatedWork W2899532525 @default.
- W3190270091 hasRelatedWork W2913715341 @default.
- W3190270091 hasRelatedWork W4213079490 @default.
- W3190270091 hasRelatedWork W4285259204 @default.
- W3190270091 hasRelatedWork W4323366756 @default.
- W3190270091 hasVolume "18" @default.
- W3190270091 isParatext "false" @default.
- W3190270091 isRetracted "false" @default.
- W3190270091 magId "3190270091" @default.